

# Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006 in seiner derzeit gültigen Fassung

Seite 1 von 27

SDB-Nr.: 175577

V013.0

überarbeitet am: 13.01.2025

Druckdatum: 26.02.2025 Ersetzt Version vom: 17.10.2024

LOCTITE AA 322 LC known as Loctite 322

# ABSCHNITT 1: Bezeichnung des Stoffs bzw. des Gemischs und des Unternehmens

#### 1.1. Produktidentifikator

LOCTITE AA 322 LC known as Loctite 322 UFI: AM2E-0W0U-0205-UJ1M

#### 1.2. Relevante identifizierte Verwendungen des Stoffs oder Gemischs und Verwendungen, von denen abgeraten wird

Vorgesehene Verwendung:

Acryl

#### 1.3. Einzelheiten zum Lieferanten, der das Sicherheitsdatenblatt bereitstellt

Henkel AG & Co. KGaA

Henkelstr. 67

40589 Düsseldorf

Deutschland

Tel.: +49 211 797 0

SDSinfo.Adhesive@henkel.com

Aktualisierungen der Sicherheitsdatenblätter können auf unserer Internetseite abgerufen werden www.mysds.henkel.com oder www.henkel-adhesives.com.

# 1.4. Notrufnummer

Für Notfälle steht Ihnen die Henkel-Werkfeuerwehr unter der Telefon-Nr. +49-(0)211-797-3350 Tag und Nacht zur Verfügung.

# ABSCHNITT 2: Mögliche Gefahren

# 2.1. Einstufung des Stoffs oder Gemischs

# **Einstufung (CLP):**

Reizwirkung auf die Haut Kategorie 2

H315 Verursacht Hautreizungen.

Schwere Augenschädigung Kategorie 1

H318 Verursacht schwere Augenschäden.

Sensibilisierung der Haut Kategorie 1

H317 Kann allergische Hautreaktionen verursachen.

Spezifische Organ-Toxizität - bei einmaliger Exposition Kategorie 3

H335 Kann die Atemwege reizen.

Zielorgan: Reizung der Atemwege.

Akute aquatische Toxizität Kategorie 1

H400 Sehr giftig für Wasserorganismen.

Chronische aquatische Toxizität Kategorie 1

H410 Sehr giftig für Wasserorganismen mit langfristiger Wirkung.

#### 2.2. Kennzeichnungselemente

#### Kennzeichnungselemente (CLP):

V013.0

SDB-Nr.: 175577

Gefahrenpiktogramm:



Enthält Isobornylacrylat

Acrylsäure

2-Propensäure, 2-Carboxyethylester

Methylmethacrylat

2-Hydroxyethylmethacrylat

Phenol, ethoxyliert, Ester mit Acrylsäure

Signalwort: Gefahr

**Gefahrenhinweis:** H315 Verursacht Hautreizungen.

H317 Kann allergische Hautreaktionen verursachen.

H318 Verursacht schwere Augenschäden.

H335 Kann die Atemwege reizen.

H410 Sehr giftig für Wasserorganismen mit langfristiger Wirkung.

Sicherheitshinweis:P261 Einatmen von Dampf vermeiden.PräventionP273 Freisetzung in die Umwelt vermeiden.

 $P280\ Schutzhandschuhe/Augenschutz\ tragen.$ 

Sicherheitshinweis: P302+P352 BEI BERÜHRUNG MIT DER HAUT: Mit viel Wasser und Seife waschen.

Reaktion P305+P351+P338 BEI KONTAKT MIT DEN AUGEN: Einige Minuten lang behutsam

P305+P351+P338 BEI KONTAKT MIT DEN AUGEN: Einige Minuten lang behutsam mit Wasser spülen. Eventuell vorhandene Kontaktlinsen nach Möglichkeit entfernen.

Weiter spülen.

P333+P313 Bei Hautreizung oder -ausschlag: Ärztlichen Rat einholen/ärztliche Hilfe

hinzuziehen.

#### 2.3. Sonstige Gefahren

Keine bei bestimmungsgemäßer Verwendung.

Bei der Aushartung dieser Produkte mit Hilfe von UV-Strahlung ist darauf zu achten, Haut und vor allem Augen nicht direkter oder reflektierter UV-Strahlung auszusetzen, da sich Langzeiteffekte schädlich auswirken könnten.

Folgende Substanzen sind in einer Konzentration ≥ der Konzentrationsgrenze für die Darstellung nach Abschnitt 3 vorhanden und erfüllen die Kriterien für PBT/vPvB, oder wurden als Endokrine Disruptoren (ED) identifiziert:

Dieses Gemisch enthält keine Substanzen in einer Konzentration ≥ der Konzentrationsgrenze für die Darstellung nach Abschnitt 3, die als PBT, vPvB oder ED eingestuft sind.

# ABSCHNITT 3: Zusammensetzung/Angaben zu Bestandteilen

#### 3.2. Gemische

V013.0

SDB-Nr.: 175577

# Inhaltsstoffangabe gemäß CLP (EG) Nr 1272/2008:

| Gefährliche Inhaltsstoffe<br>CAS-Nr.                                                  | Konzentration | Einstufung                                                                                                                                                                                                                         | Spezifische<br>Konzentrationsgrenzwerte                                                                       | Zusätzliche<br>Informationen |
|---------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------|
| EG-Nummer<br>REACH-Reg. No.                                                           |               |                                                                                                                                                                                                                                    | (SCL), M-Faktoren und ATE-<br>Werte                                                                           | mormationen                  |
| Isoboravlacrylat<br>5888-33-5<br>227-561-6<br>01-2119957862-25                        | 25- < 50 %    | Skin Sens. 1A, H317<br>Aquatic Acute 1, H400<br>Aquatic Chronic 1, H410                                                                                                                                                            | M acute = 1<br>M chronic = 1                                                                                  |                              |
| Phenol, ethoxyliert, Ester mit<br>Acrylsäure<br>56641-05-5                            | 10- < 20 %    | Skin Sens. 1A, H317<br>Aquatic Chronic 2, H411                                                                                                                                                                                     |                                                                                                               |                              |
| Acrylsäure<br>79-10-7<br>201-177-9<br>01-2119452449-31                                | 1-< 5 %       | Acute Tox. 4, Dermal, H312<br>Skin Corr. 1A, H314<br>Flam. Liq. 3, H226<br>Acute Tox. 4, Oral, H302<br>Acute Tox. 4, Einatmung,<br>H332<br>Aquatic Acute 1, H400<br>Aquatic Chronic 2, H411<br>STOT SE 3, H335<br>Eye Dam. 1, H318 | STOT SE 3; H335; C >= 1 %  =====  M acute = 1  =====  dermal:ATE = 1.100 mg/kg inhalation:ATE = 11 mg/l;Dampf | EU OEL                       |
| 2-Propylsäure, Homopolymer<br>(Oligomere)<br>9003-01-4<br>01-2120754771-50            | 1-< 5 %       | Acute Tox. 4, Oral, H302<br>Eye Dam. 1, H318<br>STOT SE 3, H335                                                                                                                                                                    |                                                                                                               |                              |
| 2-Propensäure, 2-<br>Carboxyethylester<br>24615-84-7<br>246-359-9                     | 0,1-< 1 %     | Aquatic Chronic 2, H411<br>Skin Corr. 1, H314<br>Eye Dam. 1, H318<br>Skin Sens. 1, H317<br>STOT SE 3, H335                                                                                                                         |                                                                                                               |                              |
| Methylmethacrylat<br>80-62-6<br>201-297-1<br>01-2119452498-28                         | 0,1-< 1 %     | Flam. Liq. 2, H225<br>STOT SE 3, H335<br>Skin Irrit. 2, H315<br>Skin Sens. 1, H317                                                                                                                                                 |                                                                                                               | EU OEL                       |
| Methacrylsäure<br>79-41-4<br>201-204-4<br>01-2119463884-26                            | 0,1-< 1 %     | Acute Tox. 4, Oral, H302<br>Acute Tox. 3, Dermal, H311<br>Acute Tox. 4, Einatmung,<br>H332<br>Skin Corr. 1A, H314<br>Eye Dam. 1, H318<br>STOT SE 3, H335                                                                           | STOT SE 3; H335; C >= 1 %  =====  dermal: ATE = 500 mg/kg inhalation: ATE = 3,19 mg/l; Staub/Nebel            |                              |
| 1,7,7-<br>Trimethyltricyclo[2.2.1.02,6]hept<br>an<br>508-32-7<br>208-083-7, 208-083-7 | 0,1-< 1 %     | Aquatic Acute 1, H400<br>Aquatic Chronic 1, H410                                                                                                                                                                                   | M acute = 1<br>M chronic = 1                                                                                  |                              |
| Camphen<br>79-92-5<br>201-234-8                                                       | 0,1-< 1 %     | Aquatic Acute 1, H400<br>Aquatic Chronic 1, H410<br>Flam. Sol. 2, H228<br>Eye Irrit. 2, H319                                                                                                                                       | M acute = 1<br>M chronic = 1                                                                                  |                              |
| 2-Hydroxyethylmethacrylat<br>868-77-9<br>212-782-2<br>01-2119490169-29                | 0,1-< 1 %     | Skin Irrit. 2, H315<br>Skin Sens. 1, H317<br>Eye Irrit. 2, H319                                                                                                                                                                    |                                                                                                               |                              |

Wenn keine ATE-Werte angegeben sind, beziehen Sie sich bitte auf die LD/LC50-Werte in Abschnitt 11. Vollständiger Wortlaut der H-Sätze und anderer Abkürzungen siehe Kapitel 16 'Sonstige Angaben'.

V013.0

### ABSCHNITT 4: Erste-Hilfe-Maßnahmen

#### 4.1. Beschreibung der Erste-Hilfe-Maßnahmen

Einatmen:

SDB-Nr.: 175577

Patienten an die frische Luft bringen. Bei länger anhaltenden Beschwerden Arzt konsultieren.

Die möglichen Effekte einer fehlerhaften UV-Quelle sollten berücksichtigt werden (Streustrahlung, Ozon).

Hautkontakt:

Spülung mit fließendem Wasser und Seife.

Bei anhaltender Reizung ärztlichen Rat einholen.

Augenkontakt:

Sofortige Spülung unter fließendem Wasser (10 Minuten lang), Facharzt aufsuchen.

Verschlucken:

Spülung der Mundhöhle, trinken von 1-2 Gläsern Wasser, kein Erbrechen auslösen, Arzt konsultieren.

#### 4.2. Wichtigste akute und verzögert auftretende Symptome und Wirkungen

Haut: Rötung, Entzündung.

Atemwege: Reizung, Husten, Kurzatmigkeit/Atemnot, Gefühl der Brustenge (Angina Pectoris).

Haut: Hautausschlag, Nesselsucht.

Nach Augenkontakt: Durch Ätzwirkung permante Augenschäden (Beeinträchtigung der Sehfähigkeit) möglich.

#### 4.3. Hinweise auf ärztliche Soforthilfe oder Spezialbehandlung

Siehe Kapitel: Beschreibung der Erste-Hilfe-Maßnahmen

# ABSCHNITT 5: Maßnahmen zur Brandbekämpfung

#### 5.1. Löschmittel

#### Geeignete Löschmittel:

Kohlendioxid, Schaum, Pulver

#### Aus Sicherheitsgründen ungeeignete Löschmittel:

Wasservollstrahl

#### 5.2. Besondere vom Stoff oder Gemisch ausgehende Gefahren

Im Brandfall können Kohlenmonoxid (CO), Kohlendioxid (CO2) und Stickoxide (NOx) freigesetzt werden.

#### 5.3. Hinweise für die Brandbekämpfung

 $Umgebungsluftunabhängiges\ Atemschutzger\"{a}t\ und\ Vollschutzanzug\ tragen.$ 

# Zusätzliche Hinweise:

Im Brandfall gefährdete Behälter mit Spritzwasser kühlen.

# ABSCHNITT 6: Maßnahmen bei unbeabsichtigter Freisetzung

#### 6.1. Personenbezogene Vorsichtsmaßnahmen, Schutzausrüstungen und in Notfällen anzuwendende Verfahren

Berührung mit den Augen und der Haut vermeiden.

Schutzausrüstung tragen.

Für ausreichende Be- und Entlüftung sorgen.

Zündquellen fernhalten.

#### 6.2. Umweltschutzmaßnahmen

Nicht in die Kanalisation / Oberflächenwasser / Grundwasser gelangen lassen.

V013.0

SDB-Nr.: 175577

### 6.3. Methoden und Material für Rückhaltung und Reinigung

Kontaminiertes Material als Abfall nach Absch. 13 entsorgen.

Bei geringen verschütteten Mengen diese mit Papiertuch aufwischen und für die Entsorgung in einen Behälter geben. Bei großen verschütteten Mengen mit reaktionsträgem Absorptionsmaterial aufsaugen und für die Entsorgung in einen dicht verschlossenen Behälter geben.

#### 6.4. Verweis auf andere Abschnitte

Hinweise in Abschnitt 8 beachten

# **ABSCHNITT 7: Handhabung und Lagerung**

#### 7.1. Schutzmaßnahmen zur sicheren Handhabung

Augenkontakt und Hautkontakt vermeiden.

Hinweise in Abschnitt 8 beachten

Durch Belüftung wird das Ozon entfernt, das durch die Verwendung der UV-Lampe auftreten kann

#### Hygienemaßnahmen:

Gute industrielle Hygienebedingungen sind einzuhalten

Bei der Arbeit nicht essen, trinken oder rauchen.

Vor den Pausen und nach Arbeitsende Hände waschen.

#### 7.2. Bedingungen zur sicheren Lagerung unter Berücksichtigung von Unverträglichkeiten

entsprechend dem techn. Datenblatt.

#### 7.3. Spezifische Endanwendungen

Acryl

V013.0

SDB-Nr.: 175577

# ABSCHNITT 8: Begrenzung und Überwachung der Exposition/Persönliche Schutzausrüstungen

#### 8.1. Zu überwachende Parameter

# Arbeitsplatzgrenzwerte

Gültig für

Deutschland

| Inhaltstsoff [Regulierte Stoffgruppe]                  | ppm | mg/m <sup>3</sup> | Werttyp                        | Kategorie Kurzzeitwert /<br>Bemerkungen                                                                                        | Gesetzliche Liste |
|--------------------------------------------------------|-----|-------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Acrylsäure<br>79-10-7<br>[ACRYLSÄURE (PROP-2-ENSÄURE)] | 10  | 29                | Tagesmittelwert                | Indikativ                                                                                                                      | ECTLV             |
| Acrylsäure<br>79-10-7<br>[ACRYLSÄURE (PROP-2-ENSÄURE)] | 20  | 59                | Kurzzeitwert                   | Indikativ                                                                                                                      | ECTLV             |
| Acrylsäure<br>79-10-7<br>[ACRYLSÄURE]                  |     |                   | Kategorie für<br>Kurzzeitwerte | Kategorie I: Stoffe bei denen<br>die lokale Wirkung<br>grenzwertbestimmend ist oder<br>atemwegssensibilisierende<br>Stoffe.    | TRGS 900          |
| Acrylsäure<br>79-10-7<br>[Acrylsäure]                  |     |                   | Überschreitungsfaktor          | 1<br>Stoffe mit Spitzenbegrenzung<br>und Kurzzeitfaktor aufgelistet.<br>Die AGW-Werte werden als<br>Spitzenbegrenzung gegeben. | TRGS 900          |
| Acrylsäure<br>79-10-7<br>[Acrylsäure]                  |     |                   | Hautbezeichnung:               | Hautresorptiv                                                                                                                  | TRGS 900          |
| Acrylsäure<br>79-10-7<br>[Acrylsäure]                  | 10  | 30                | AGW:                           | 2 Ein Risiko der Fruchtschädigung braucht bei Einhaltung des AGW und des BGW nicht befürchtet zu werden (siehe Nummer 2.7).    | TRGS 900          |
| Methylmethacrylat<br>80-62-6<br>[METHYL-METHACRYLAT]   | 50  | 210               | AGW:                           | 2 Ein Risiko der Fruchtschädigung braucht bei Einhaltung des AGW und des BGW nicht befürchtet zu werden (siehe Nummer 2.7).    | TRGS 900          |
| Methylmethacrylat<br>80-62-6<br>[METHYL-METHACRYLAT]   |     |                   | Kategorie für<br>Kurzzeitwerte | Kategorie I: Stoffe bei denen<br>die lokale Wirkung<br>grenzwertbestimmend ist oder<br>atemwegssensibilisierende<br>Stoffe.    | TRGS 900          |
| Methylmethacrylat<br>80-62-6<br>[METHYLMETHACRYLAT]    | 100 |                   | Kurzzeitwert                   | Indikativ                                                                                                                      | ECTLV             |
| Methylmethacrylat<br>80-62-6<br>[METHYLMETHACRYLAT]    | 50  |                   | Tagesmittelwert                | Indikativ                                                                                                                      | ECTLV             |
| Methacrylsäure<br>79-41-4<br>[METHACRYLSÄURE]          | 50  | 180               | AGW:                           | 2 Ein Risiko der Fruchtschädigung braucht bei Einhaltung des AGW und des BGW nicht befürchtet zu werden (siehe Nummer 2.7).    | TRGS 900          |
| Methacrylsäure<br>79-41-4<br>[METHACRYLSÄURE]          |     |                   | Kategorie für<br>Kurzzeitwerte | Kategorie I: Stoffe bei denen<br>die lokale Wirkung<br>grenzwertbestimmend ist oder<br>atemwegssensibilisierende<br>Stoffe.    | TRGS 900          |

SDB-Nr.: 175577 V013.0

# **Predicted No-Effect Concentration (PNEC):**

|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Wert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bemerkungen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                                               |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------|
| Timent                                 | 52010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | andere          |                                               |
| Süsswasser                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,001 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                                               |
| Wasser<br>(zeitweilige<br>Freisetzung) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,007 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                                               |
| Salzwasser                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,0001<br>mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                                               |
| Kläranlage                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                                               |
| Sediment<br>(Süsswasser)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,145<br>mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                                               |
| Sediment                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,0145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                                               |
| Boden                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,0285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                                               |
| Raubtier                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ilig/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | kein Potenzial für<br>Bioakkumulation         |
| Süsswasser                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,003 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | Dioakkumulation                               |
| Salzwasser                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                                               |
| Kläranlage                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,9 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                                               |
| Sediment                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,0236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                                               |
| Sediment                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,00236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                                               |
| (Salzwasser)<br>Boden                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/kg<br>1 mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                                               |
| oral                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,03 g/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                                               |
| Luft                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | keine Gefahr identifiziert                    |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.018 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | Reme Geram Identifizzer                       |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                                               |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                                               |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,9 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                                               |
| (Süsswasser)                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                                               |
| Sediment<br>(Salzwasser)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                                               |
| Boden                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,416<br>mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                                               |
| Süsswasser                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,94 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                                               |
| Salzwasser                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,94 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                                               |
| Wasser<br>(zeitweilige<br>Freisetzung) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,94 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                                               |
| Kläranlage                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                                               |
| Sediment<br>(Sijsswasser)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5,74 mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                                               |
| Boden                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,47 mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                                               |
| Süsswasser                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,82 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                                               |
| Süßwasser -                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,45 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                                               |
| Salzwasser                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,082 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                                               |
| Kläranlage                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                                               |
|                                        | Süsswasser  Wasser (zeitweilige Freisetzung) Salzwasser  Kläranlage  Sediment (Süsswasser) Boden  Raubtier  Süsswasser  Kläranlage  Sediment (Süsswasser) Sediment (Süsswasser)  Salzwasser  Kläranlage  Sediment (Süsswasser) Sediment (Süsswasser) Sediment (Süsswasser) Sediment (Salzwasser) Boden  oral  Luft  Süsswasser  Kläranlage  Sediment (Süsswasser) Sediment (Süsswasser) Sediment (Süsswasser) Sediment (Süsswasser) Sediment (Süsswasser) Sediment (Süsswasser) Boden  Süsswasser  Salzwasser  Vasser (zeitweilige Freisetzung) Kläranlage  Sediment (Süsswasser) Boden  Süsswasser  Salzwasser  Vasser (zeitweilige Freisetzung) Kläranlage  Sediment (Süsswasser)  Sediment (Süsswasser) | rtiment szeit  Süsswasser  Wasser (zeitweilige Freisetzung) Salzwasser  Kläranlage  Sediment (Süsswasser) Sediment (Salzwasser) Boden  Raubtier  Süsswasser  Kläranlage  Sediment (Süsswasser) Sediment (Süsswasser) Sediment (Süsswasser) Sediment (Salzwasser) Boden  oral Luft  Süsswasser  Kläranlage  Sediment (Süsswasser) Sediment (Salzwasser) Boden  oral  Luft  Süsswasser  Salzwasser  Kläranlage  Sediment (Süsswasser) Sediment (Süsswasser) Sediment (Süsswasser) Sediment (Süsswasser) Boden  Süsswasser  Salzwasser  Salzwasser  Salzwasser  Salzwasser  Süßwasser  Süßwasser  Süßwasser  Süßwasser  Süßwasser  Süßwasser  Süßwasser  Süßwasser | rtiment         szeit           Süsswasser         0,001 mg/l           Wasser (zeitweilige Freisetzung)         0,0001 mg/l           Salzwasser         0,0001 mg/l           Kläranlage         2 mg/l           Sediment (Süsswasser)         Sediment (Süsswasser)           Boden         Raubtier           Süsswasser         0,0003 mg/l           Kläranlage         0,9 mg/l           Sediment (Süsswasser)         Sediment (Süsswasser)           Boden         0,018 mg/l           Valtaranlage         0,018 mg/l           Salzwasser         0,0018 mg/l           Salzwasser         0,0018 mg/l           Salzwasser         0,018 mg/l           Salzwasser         0,94 mg/l           Sediment (Süsswasser)         0,94 mg/l           Salzwasser         0,94 mg/l           Salzwasser         0,94 mg/l           Sediment (Süsswasser)         0,94 mg/l           Sediment (Süsswasser)         0,94 mg/l           Sediment (Süswasser)         0,94 mg/l           Sediment (Süswasser)         0,94 mg/l | Stisswasser   Sediment   Sedime | Triment   Szeit | Triment   Szeit   mg/l   ppm   mg/kg   andere |

SDB-Nr.: 175577 V013.0

| Methacrylsäure                        | Sediment     |            | 3,09 mg/kg |                                       |
|---------------------------------------|--------------|------------|------------|---------------------------------------|
| 79-41-4                               | (Süsswasser) |            |            |                                       |
| Methacrylsäure                        | Sediment     |            | 0,309      |                                       |
| 79-41-4                               | (Salzwasser) |            | mg/kg      |                                       |
| Methacrylsäure                        | Boden        |            | 0,137      |                                       |
| 79-41-4                               |              |            | mg/kg      |                                       |
| Methacrylsäure<br>79-41-4             | Raubtier     |            |            | kein Potenzial für<br>Bioakkumulation |
| 2-Hydroxyethylmethacrylat<br>868-77-9 | Süsswasser   | 0,482 mg/l |            |                                       |
| 2-Hydroxyethylmethacrylat<br>868-77-9 | Salzwasser   | 0,482 mg/l |            |                                       |
| 2-Hydroxyethylmethacrylat<br>868-77-9 | Kläranlage   | 10 mg/l    |            |                                       |
| 2-Hydroxyethylmethacrylat             | Wasser       | 1 mg/l     |            |                                       |
| 868-77-9                              | (zeitweilige |            |            |                                       |
|                                       | Freisetzung) |            |            |                                       |
| 2-Hydroxyethylmethacrylat             | Sediment     |            | 3,79 mg/kg |                                       |
| 868-77-9                              | (Süsswasser) |            |            |                                       |
| 2-Hydroxyethylmethacrylat             | Sediment     |            | 3,79 mg/kg |                                       |
| 868-77-9                              | (Salzwasser) |            |            |                                       |
| 2-Hydroxyethylmethacrylat             | Boden        |            | 0,476      |                                       |
| 868-77-9                              |              |            | mg/kg      |                                       |
| 2-Hydroxyethylmethacrylat             | Raubtier     |            |            | kein Potenzial für                    |
| 868-77-9                              |              |            |            | Bioakkumulation                       |
| 2-Hydroxyethylmethacrylat             | Meerwasser - | 1 mg/l     |            |                                       |
| 868-77-9                              | zeitweilig   |            |            |                                       |

Seite 9 von 27

SDB-Nr.: 175577 V013.0

# **Derived No-Effect Level (DNEL):**

| Name aus Liste                                      | Anwendungsge<br>biet     | Exposition sweg | Auswirkung auf die Gesundheit                          | Exposition sdauer | Wert        | Bemerkungen                           |
|-----------------------------------------------------|--------------------------|-----------------|--------------------------------------------------------|-------------------|-------------|---------------------------------------|
| Isobornylacrylat<br>5888-33-5                       | Arbeitnehmer             | dermal          | Langfristige<br>Exposition -<br>systemische<br>Effekte |                   | 1,39 mg/kg  | kein Potenzial für<br>Bioakkumulation |
| Isobornylacrylat<br>5888-33-5                       | Breite<br>Öffentlichkeit | oral            | Langfristige<br>Exposition -<br>systemische<br>Effekte |                   | 0,83 mg/kg  | kein Potenzial für<br>Bioakkumulation |
| Isobornylacrylat<br>5888-33-5                       | Breite<br>Öffentlichkeit | dermal          | Langfristige<br>Exposition -<br>systemische<br>Effekte |                   | 0,83 mg/kg  | kein Potenzial für<br>Bioakkumulation |
| Acrylsäure<br>79-10-7                               | Arbeitnehmer             | Inhalation      | Langfristige<br>Exposition -<br>lokale Effekte         |                   | 30 mg/m3    | keine Gefahr identifiziert            |
| Acrylsäure<br>79-10-7                               | Arbeitnehmer             | Inhalation      | Akute/kurzfristige<br>Exposition -<br>lokale Effekte   |                   | 30 mg/m3    | keine Gefahr identifiziert            |
| Acrylsäure<br>79-10-7                               | Arbeitnehmer             | dermal          | Akute/kurzfristige<br>Exposition -<br>lokale Effekte   |                   | 1 mg/cm2    | keine Gefahr identifiziert            |
| Acrylsäure<br>79-10-7                               | Breite<br>Öffentlichkeit | dermal          | Akute/kurzfristige<br>Exposition -<br>lokale Effekte   |                   | 1 mg/cm2    | keine Gefahr identifiziert            |
| Acrylsäure<br>79-10-7                               | Breite<br>Öffentlichkeit | Inhalation      | Akute/kurzfristige<br>Exposition -<br>lokale Effekte   |                   | 3,6 mg/m3   | keine Gefahr identifiziert            |
| Acrylsäure<br>79-10-7                               | Breite<br>Öffentlichkeit | Inhalation      | Langfristige<br>Exposition -<br>lokale Effekte         |                   | 3,6 mg/m3   | keine Gefahr identifiziert            |
| 2-Propylsäure, Homopolymer (Oligomere) 9003-01-4    | Arbeitnehmer             | Inhalation      | Langfristige<br>Exposition -<br>systemische<br>Effekte |                   | 1,97 mg/m3  |                                       |
| 2-Propylsäure, Homopolymer (Oligomere)<br>9003-01-4 | Arbeitnehmer             | dermal          | Langfristige<br>Exposition -<br>systemische<br>Effekte |                   | 0,56 mg/kg  |                                       |
| 2-Propylsäure, Homopolymer (Oligomere) 9003-01-4    | Breite<br>Öffentlichkeit | Inhalation      | Langfristige<br>Exposition -<br>systemische<br>Effekte |                   | 0,348 mg/m3 |                                       |
| 2-Propylsäure, Homopolymer (Oligomere)<br>9003-01-4 | Breite<br>Öffentlichkeit | dermal          | Langfristige<br>Exposition -<br>systemische<br>Effekte |                   | 0,2 mg/kg   |                                       |
| 2-Propylsäure, Homopolymer (Oligomere) 9003-01-4    | Breite<br>Öffentlichkeit | oral            | Langfristige<br>Exposition -<br>systemische<br>Effekte |                   | 0,2 mg/kg   |                                       |
| Methylmethacrylat<br>80-62-6                        | Arbeitnehmer             | Einatmung       | Langfristige<br>Exposition -<br>systemische<br>Effekte |                   | 348,4 mg/m3 |                                       |
| Methylmethacrylat<br>80-62-6                        | Arbeitnehmer             | Einatmung       | Langfristige<br>Exposition -<br>lokale Effekte         |                   | 208 mg/m3   |                                       |
| Methylmethacrylat<br>80-62-6                        | Arbeitnehmer             | Inhalation      | Akute/kurzfristige<br>Exposition -<br>lokale Effekte   |                   | 416 mg/m3   |                                       |
| Methylmethacrylat<br>80-62-6                        | Arbeitnehmer             | dermal          | Langfristige<br>Exposition -<br>systemische<br>Effekte |                   | 13,67 mg/kg |                                       |
| Methylmethacrylat<br>80-62-6                        | Arbeitnehmer             | dermal          | Langfristige<br>Exposition -<br>lokale Effekte         |                   | 1,5 mg/cm2  |                                       |
| Methylmethacrylat                                   | Arbeitnehmer             | dermal          | Akute/kurzfristige                                     |                   | 1,5 mg/cm2  |                                       |

SDB-Nr.: 175577 V013.0

| 80-62-6                               |                          |            | Exposition - lokale Effekte                            |            |                                       |
|---------------------------------------|--------------------------|------------|--------------------------------------------------------|------------|---------------------------------------|
| Methylmethacrylat<br>80-62-6          | Breite<br>Öffentlichkeit | Einatmung  | Langfristige<br>Exposition -<br>systemische<br>Effekte | 74,3 mg/m3 |                                       |
| Methylmethacrylat<br>80-62-6          | Breite<br>Öffentlichkeit | Einatmung  | Langfristige<br>Exposition -<br>lokale Effekte         | 104 mg/m3  |                                       |
| Methylmethacrylat<br>80-62-6          | Breite<br>Öffentlichkeit | Inhalation | Akute/kurzfristige<br>Exposition -<br>lokale Effekte   | 208 mg/m3  |                                       |
| Methylmethacrylat<br>80-62-6          | Breite<br>Öffentlichkeit | dermal     | Langfristige Exposition - systemische Effekte          | 8,2 mg/kg  |                                       |
| Methylmethacrylat<br>80-62-6          | Breite<br>Öffentlichkeit | dermal     | Langfristige<br>Exposition -<br>lokale Effekte         | 1,5 mg/cm2 |                                       |
| Methylmethacrylat<br>80-62-6          | Breite<br>Öffentlichkeit | dermal     | Akute/kurzfristige<br>Exposition -<br>lokale Effekte   | 1,5 mg/cm2 |                                       |
| Methylmethacrylat<br>80-62-6          | Breite<br>Öffentlichkeit | oral       | Langfristige<br>Exposition -<br>systemische<br>Effekte |            |                                       |
| Methacrylsäure<br>79-41-4             | Arbeitnehmer             | Einatmung  | Langfristige<br>Exposition -<br>lokale Effekte         | 88 mg/m3   | kein Potenzial für<br>Bioakkumulation |
| Methacrylsäure<br>79-41-4             | Arbeitnehmer             | Einatmung  | Langfristige<br>Exposition -<br>systemische<br>Effekte | 29,6 mg/m3 | kein Potenzial für<br>Bioakkumulation |
| Methacrylsäure<br>79-41-4             | Arbeitnehmer             | dermal     | Langfristige Exposition - systemische Effekte          | 4,25 mg/kg | kein Potenzial für<br>Bioakkumulation |
| Methacrylsäure<br>79-41-4             | Breite<br>Öffentlichkeit | Einatmung  | Langfristige<br>Exposition -<br>lokale Effekte         | 6,55 mg/m3 | kein Potenzial für<br>Bioakkumulation |
| Methacrylsäure<br>79-41-4             | Breite<br>Öffentlichkeit | Einatmung  | Langfristige Exposition - systemische Effekte          | 6,3 mg/m3  | kein Potenzial für<br>Bioakkumulation |
| Methacrylsäure<br>79-41-4             | Breite<br>Öffentlichkeit | dermal     | Langfristige Exposition - systemische Effekte          | 2,55 mg/kg | kein Potenzial für<br>Bioakkumulation |
| 2-Hydroxyethylmethacrylat<br>868-77-9 | Arbeitnehmer             | dermal     | Langfristige Exposition - systemische Effekte          | 1,3 mg/kg  | kein Potenzial für<br>Bioakkumulation |
| 2-Hydroxyethylmethacrylat<br>868-77-9 | Arbeitnehmer             | Einatmung  | Langfristige Exposition - systemische Effekte          | 4,9 mg/m3  | kein Potenzial für<br>Bioakkumulation |
| 2-Hydroxyethylmethacrylat<br>868-77-9 | Breite<br>Öffentlichkeit | dermal     | Langfristige<br>Exposition -<br>systemische<br>Effekte | 0,83 mg/kg | kein Potenzial für<br>Bioakkumulation |
| 2-Hydroxyethylmethacrylat<br>868-77-9 | Breite<br>Öffentlichkeit | Einatmung  | Langfristige Exposition - systemische Effekte          | 2,9 mg/m3  | kein Potenzial für<br>Bioakkumulation |
| 2-Hydroxyethylmethacrylat<br>868-77-9 | Breite<br>Öffentlichkeit | oral       | Langfristige Exposition - systemische Effekte          | 0,83 mg/kg | kein Potenzial für<br>Bioakkumulation |

SDB-Nr.: 175577 27 V013.0

#### **Biologischer Grenzwert (BGW):**

keine

# 8.2. Begrenzung und Überwachung der Exposition:

Hinweise zur Gestaltung technischer Anlagen:

Für gute Be- und Entlüftung sorgen.

UV-Lampen sollten so konstruiert, installiert und betrieben werden, daß Haut und Augen nicht einer möglichen Streustrahlung ausgesetzt werden können

#### Atemschutz:

Für ausreichende Be- und Entlüftung sorgen.

Eine zugelassene Atemschutzmaske bzwAtemschutzgerät mit geeigneter Kartusche für organische Dämpfe sollte getragen werden, wenn das Produkt in einer schlecht belüfteten Umgebung verwendet wird

Filtertyp: A (EN 14387)

#### Handschutz:

Chemikalienbeständige Schutzhandschuhe (EN 374).

Geeignete Materialen bei kurzfristigem Kontakt bzw. Spritzern (Empfohlen: Mindestens Schutzindex 2, entsprechend > 30 Minuten Permeationszeit nach EN 374):

Nitrilkautschuk (NBR; >= 0,4 mm Schichtdicke)

Geeignete Materialien auch bei längerem, direktem Kontakt (Empfohlen: Schutzindex 6, entsprechend > 480 Minuten

Permeationszeit nach EN 374):

Nitrilkautschuk (NBR; >= 0,4 mm Schichtdicke)

Die Angaben basieren auf Literaturangaben und Informationen von Handschuhherstellern oder sind durch Analogieschluß von ähnlichen Stoffen abgeleitet. Es ist zu beachten, dass die Gebrauchsdauer eines Chemikalienschutzhandschuhs in der Praxis auf Grund der vielen Einflußfaktoren (z.B. Temperatur) deutlich kürzer als die nach EN 374 ermittelte Permeationszeit sein kann. Bei Abnutzungserscheinungen ist der Handschuh zu wechseln.

#### Augenschutz:

Zum Schutz gegen mögliche Spritzer sollte eine Schutzbrille mit Seitenschildern oder eine dichtschließende Chemikalien-

Der Augenschutz sollte konform zur EN 166 sein.

Bei der Arbeit geeignete Schutzkleidung tragen.

Die Schutzkleidung sollte konform zur EN 14605 für Flüssigkeitsspritzer oder zur EN 13982 für Stäube sein.

### Hinweise zu persönlicher Schutzausrüstung:

Die Informationen zur vorgeschlagenen persönlichen Schutzausrüstungen haben nur eine beratende Funktion. Eine vollständige Risikoabschätzung sollte vor der Verwendung des Produktes durchgeführt werden, um einzuschätzen, ob sich die angezeigten persönlichen Schutzausrüstungen für die örtlichen Gegebenheiten eignen. Die persönliche Schutzausrüstung sollte konform zu den maßgeblichen EU-Standards sein.

# ABSCHNITT 9: Physikalische und chemische Eigenschaften

#### 9.1. Angaben zu den grundlegenden physikalischen und chemischen Eigenschaften

Lieferform Flüssigkeit Farbe hellgelb Geruch Scharf Aggregatzustand flüssig

Schmelzpunkt Nicht anwendbar, Produkt ist eine Flüssigkeit

Siedebeginn > 150,0 °C (> 302 °F)

Entzündbarkeit Das Produkt ist nicht brennbar.

Explosionsgrenzen Nicht anwendbar, Das Produkt ist nicht brennbar.

Flammpunkt  $> 100 \, ^{\circ}\text{C} \, (> 212 \, ^{\circ}\text{F})$ 

> 93 °C (> 199.4 °F); Tagliabue closed cup Flammpunkt

485 °C (905 °F) Selbstentzündungstemperatur

Zersetzungstemperatur Nicht anwendbar, Stoff/Gemisch ist nicht selbstreagierend, kein

organisches Peroxid und zersetzt sich nicht unter den vorgesehenen

Verwendungsbedingungen

pH-Wert Das Produkt reagiert mit Wasser, Nicht anwendbar SDB-Nr.: 175577 27 V013.0

Viskosität (kinematisch) > 20.5 mm2/s

(40 °C (104 °F); )

Löslichkeit qualitativ unlöslich

(20 °C (68 °F); Lsm.: Wasser)

nicht mischbar Löslichkeit qualitativ

(Lsm.: Wasser)

Verteilungskoeffizient: n-Octanol/Wasser Nicht anwendbar

Gemisch

Dampfdruck

< 3 mm Hg

(20 °C (68 °F)) Dichte

1,0500 g/cm3 keine

(20 °C (68 °F)) Relative Dampfdichte:

(20 °C)

Nicht anwendbar

Partikeleigenschaften

Produkt ist eine Flüssigkeit

# 9.2. Sonstige Angaben

Weitere Informationen treffen nicht auf dieses Produkt zu

# ABSCHNITT 10: Stabilität und Reaktivität

#### 10.1. Reaktivität

Reagiert mit starken Oxidationsmitteln.

Säuren.

Reduktionsmittel.

Starke Basen.

#### 10.2. Chemische Stabilität

Stabil unter angegebenen Lagerungsbedingungen.

#### 10.3. Möglichkeit gefährlicher Reaktionen

Siehe Abschnitt Reaktivität

### 10.4. Zu vermeidende Bedingungen

Unter normalen Lagerungs- und Anwendungsbedingungen stabil.

Vor direkter Sonneneinstrahlung schützen.

Kontakt mit Säuren und Oxidationsmitteln vermeiden.

#### 10.5. Unverträgliche Materialien

Siehe Abschnitt Reaktivität.

# 10.6. Gefährliche Zersetzungsprodukte

Kohlenoxide

Kohlenwasserstoffe

Stickoxide

Schnelle Polymerisation kann zu übermäßiger Hitze- und Druckentwicklung führen.

Seite 13 von

SDB-Nr.: 175577 V013.0 27

# **ABSCHNITT 11: Toxikologische Angaben**

# 11.1 Angaben zu den Gefahrenklassen im Sinne der Verordnung (EG) Nr. 1272/2008

#### Akute orale Toxizität:

Das Gemisch ist gemäß der Kalkulationsmethode, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

| Gefährliche Inhaltsstoffe                                  | Werttyp | Wert           | Spezies | Methode                                                           |
|------------------------------------------------------------|---------|----------------|---------|-------------------------------------------------------------------|
| CAS-Nr. Isobornylacrylat 5888-33-5                         | LD50    | 4.350 mg/kg    | Ratte   | nicht spezifiziert                                                |
| Phenol, ethoxyliert, Ester<br>mit Acrylsäure<br>56641-05-5 | LD50    | > 5.000 mg/kg  | Ratte   | OECD Guideline 401 (Acute Oral Toxicity)                          |
| Acrylsäure<br>79-10-7                                      | LD50    | 1.500 mg/kg    | Ratte   | equivalent or similar to OECD Guideline 401 (Acute Oral Toxicity) |
| 2-Propylsäure,<br>Homopolymer<br>(Oligomere)<br>9003-01-4  | LD50    | 1.500 mg/kg    | Ratte   | equivalent or similar to OECD Guideline 401 (Acute Oral Toxicity) |
| Methylmethacrylat<br>80-62-6                               | LD50    | 9.400 mg/kg    | Ratte   | nicht spezifiziert                                                |
| Methacrylsäure<br>79-41-4                                  | LD50    | 1.320 mg/kg    | Ratte   | equivalent or similar to OECD Guideline 401 (Acute Oral Toxicity) |
| Camphen<br>79-92-5                                         | LD50    | >= 5.000 mg/kg | Ratte   | Limit Test                                                        |
| 2-<br>Hydroxyethylmethacrylat<br>868-77-9                  | LD50    | 5.564 mg/kg    | Ratte   | FDA Richtlinie                                                    |

#### Akute dermale Toxizität:

Das Gemisch ist gemäß der Kalkulationsmethode, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

| Gefährliche Inhaltsstoffe CAS-Nr.                         | Werttyp                                | Wert                 | Spezies   | Methode                                                             |
|-----------------------------------------------------------|----------------------------------------|----------------------|-----------|---------------------------------------------------------------------|
| Isobornylacrylat<br>5888-33-5                             | LD50                                   | > 3.000 mg/kg        | Kaninchen | nicht spezifiziert                                                  |
| Phenol, ethoxyliert, Ester mit Acrylsäure 56641-05-5      | LD50                                   | > 2.000 mg/kg        | Kaninchen | OECD Guideline 402 (Acute Dermal Toxicity)                          |
| Acrylsäure<br>79-10-7                                     | Acute toxicity estimate (ATE)          | 1.100 mg/kg          |           | Expertenbewertung                                                   |
| 2-Propylsäure,<br>Homopolymer<br>(Oligomere)<br>9003-01-4 | LD50                                   | > 2.000 mg/kg        | Kaninchen | OECD Guideline 402 (Acute Dermal Toxicity)                          |
| Methylmethacrylat<br>80-62-6                              | LD50                                   | > 5.000 mg/kg        | Kaninchen | equivalent or similar to OECD Guideline 402 (Acute Dermal Toxicity) |
| Methacrylsäure<br>79-41-4                                 | LD50                                   | 500 - 1.000<br>mg/kg | Kaninchen | Dermales Toxizität Screening                                        |
| Methacrylsäure<br>79-41-4                                 | Acute<br>toxicity<br>estimate<br>(ATE) | 500 mg/kg            |           | Expertenbewertung                                                   |
| 2-<br>Hydroxyethylmethacrylat<br>868-77-9                 | LD50                                   | > 5.000 mg/kg        | Kaninchen | nicht spezifiziert                                                  |

Seite 14 von

SDB-Nr.: 175577 V013.0 27

# Akute inhalative Toxizität:

Das Gemisch ist gemäß der Kalkulationsmethode, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen

| Gefährliche Inhaltsstoffe CAS-Nr.                         | Werttyp                       | Wert            | Testatmosph re | Expositio nsdauer | Spezies | Methode                                                                       |
|-----------------------------------------------------------|-------------------------------|-----------------|----------------|-------------------|---------|-------------------------------------------------------------------------------|
| Acrylsäure<br>79-10-7                                     | LC0                           | 5,1 mg/l        | Dampf          | 4 h               | Ratte   | equivalent or similar to OECD<br>Guideline 403 (Acute<br>Inhalation Toxicity) |
| Acrylsäure<br>79-10-7                                     | Acute toxicity estimate (ATE) | 11 mg/l         | Dampf          |                   |         | Expertenbewertung                                                             |
| 2-Propylsäure,<br>Homopolymer<br>(Oligomere)<br>9003-01-4 | LC50                          | > 5,1 mg/l      | Dampf          | 4 h               | Ratte   | equivalent or similar to OECD<br>Guideline 403 (Acute<br>Inhalation Toxicity) |
| Methylmethacrylat<br>80-62-6                              | LC50                          | 29,8 mg/l       | Dampf          | 4 h               | Ratte   | nicht spezifiziert                                                            |
| Methacrylsäure<br>79-41-4                                 | LC50                          | 3,19 - 6,5 mg/l | Staub/Nebel    | 4 h               | Ratte   | equivalent or similar to OECD<br>Guideline 403 (Acute<br>Inhalation Toxicity) |
| Methacrylsäure<br>79-41-4                                 | Acute toxicity estimate (ATE) | 3,19 mg/l       | Staub/Nebel    |                   |         | Expertenbewertung                                                             |

# Ätz-/Reizwirkung auf die Haut:

Das Gemisch ist gemäß der Kalkulationsmethode, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

| Gefährliche Inhaltsstoffe  | Ergebnis       | Expositio | Spezies   | Methode                                                  |
|----------------------------|----------------|-----------|-----------|----------------------------------------------------------|
| CAS-Nr.                    |                | nsdauer   |           |                                                          |
| Isobornylacrylat           | nicht reizend  | 24 h      | Kaninchen | weitere Richtlinien:                                     |
| 5888-33-5                  |                |           |           |                                                          |
| Phenol, ethoxyliert, Ester | nicht reizend  |           | Kaninchen | OECD Guideline 404 (Acute Dermal Irritation / Corrosion) |
| mit Acrylsäure             |                |           |           |                                                          |
| 56641-05-5                 |                |           |           |                                                          |
| Acrylsäure                 | Sub-Category   | 3 min     | Kaninchen | OECD Guideline 404 (Acute Dermal Irritation / Corrosion) |
| 79-10-7                    | 1A (corrosive) |           |           |                                                          |
| 2-Propylsäure,             | leicht reizend | 4 h       | Kaninchen | OECD Guideline 404 (Acute Dermal Irritation / Corrosion) |
| Homopolymer                |                |           |           |                                                          |
| (Oligomere)                |                |           |           |                                                          |
| 9003-01-4                  |                |           |           |                                                          |
| 2-Propensäure, 2-          | ätzend         | 24 h      | Kaninchen | nicht spezifiziert                                       |
| Carboxyethylester          |                |           |           |                                                          |
| 24615-84-7                 |                |           |           |                                                          |
| Methacrylsäure             | ätzend         | 3 min     | Kaninchen | OECD Guideline 404 (Acute Dermal Irritation / Corrosion) |
| 79-41-4                    |                |           |           |                                                          |
| Camphen                    | nicht reizend  | 4 h       | Kaninchen | OECD Guideline 404 (Acute Dermal Irritation / Corrosion) |
| 79-92-5                    |                |           |           |                                                          |
| 2-                         | leicht reizend | 24 h      | Kaninchen | Draize Test                                              |
| Hydroxyethylmethacrylat    |                |           |           |                                                          |
| 868-77-9                   |                |           |           |                                                          |

Seite 15 von

SDB-Nr.: 175577 V013.0 27

# Schwere Augenschädigung/-reizung:

Das Gemisch ist gemäß der Kalkulationsmethode, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

| Gefährliche Inhaltsstoffe CAS-Nr.                          | Ergebnis                                              | Expositio nsdauer | Spezies   | Methode                                               |
|------------------------------------------------------------|-------------------------------------------------------|-------------------|-----------|-------------------------------------------------------|
| Isobornylacrylat<br>5888-33-5                              | nicht reizend                                         |                   | Kaninchen | weitere Richtlinien:                                  |
| Phenol, ethoxyliert, Ester<br>mit Acrylsäure<br>56641-05-5 | leicht reizend                                        |                   | Kaninchen | OECD Guideline 405 (Acute Eye Irritation / Corrosion) |
| Acrylsäure<br>79-10-7                                      | Category 1<br>(irreversible<br>effects on the<br>eye) |                   | Kaninchen | BASF Test                                             |
| 2-Propylsäure,<br>Homopolymer<br>(Oligomere)<br>9003-01-4  | Category 1<br>(irreversible<br>effects on the<br>eye) |                   | Kaninchen | BASF Test                                             |
| Methacrylsäure<br>79-41-4                                  | ätzend                                                |                   | Kaninchen | Draize Test                                           |
| Camphen<br>79-92-5                                         | reizend                                               | 24 h              | Kaninchen | OECD Guideline 405 (Acute Eye Irritation / Corrosion) |
| 2-<br>Hydroxyethylmethacrylat<br>868-77-9                  | Category 2B<br>(mildly<br>irritating to<br>eyes)      |                   | Kaninchen | Draize Test                                           |

# Sensibilisierung der Atemwege/Haut:

Das Gemisch ist auf der Grundlage von Grenzwerten, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

| Gefährliche Inhaltsstoffe CAS-Nr. | Ergebnis         | Testtyp                    | Spezies      | Methode                                 |
|-----------------------------------|------------------|----------------------------|--------------|-----------------------------------------|
| Isobornylacrylat                  | sensibilisierend | locales Maus-Lymphnode     | Maus         | OECD Guideline 429 (Skin Sensitisation: |
| 5888-33-5                         |                  | Muster                     |              | Local Lymph Node Assay)                 |
| Phenol, ethoxyliert, Ester        | Sub-Category 1A  | Meerschweinchen            | Meerschweinc | OECD Guideline 406 (Skin Sensitisation) |
| mit Acrylsäure                    | (sensitising)    | Maximierungstest           | hen          |                                         |
| 56641-05-5                        |                  |                            |              |                                         |
| Acrylsäure                        | nicht            | Freund's complete adjuvant | Meerschweinc | Klecak Method                           |
| 79-10-7                           | sensibilisierend | test                       | hen          |                                         |
| Acrylsäure                        | nicht            | Split adjuvant test        | Meerschweinc | Maguire Method                          |
| 79-10-7                           | sensibilisierend |                            | hen          |                                         |
| 2-Propylsäure,                    | nicht            | Freund's complete adjuvant | Meerschweinc | Klecak Method                           |
| Homopolymer                       | sensibilisierend | test                       | hen          |                                         |
| (Oligomere)                       |                  |                            |              |                                         |
| 9003-01-4                         |                  |                            |              |                                         |
| 2-Propylsäure,                    | nicht            | Split adjuvant test        | Meerschweinc | Maguire Method                          |
| Homopolymer                       | sensibilisierend |                            | hen          |                                         |
| (Oligomere)                       |                  |                            |              |                                         |
| 9003-01-4                         |                  |                            |              |                                         |
| 2-Propensäure, 2-                 | sensibilisierend | locales Maus-Lymphnode     | Maus         | OECD Guideline 429 (Skin Sensitisation: |
| Carboxyethylester                 |                  | Muster                     |              | Local Lymph Node Assay)                 |
| 24615-84-7                        |                  |                            |              |                                         |
| Methylmethacrylat                 | sensibilisierend | locales Maus-Lymphnode     | Maus         | OECD Guideline 429 (Skin Sensitisation: |
| 80-62-6                           |                  | Muster                     |              | Local Lymph Node Assay)                 |
| Methacrylsäure                    | nicht            | Buehler test               | Meerschweinc | equivalent or similar to OECD Guideline |
| 79-41-4                           | sensibilisierend |                            | hen          | 406 (Skin Sensitisation)                |
| 2-                                | nicht            | Buehler test               | Meerschweinc | Buehler test                            |
| Hydroxyethylmethacrylat           | sensibilisierend |                            | hen          |                                         |
| 868-77-9                          |                  |                            |              |                                         |
| 2-                                | sensibilisierend | Meerschweinchen            | Meerschweinc | Magnusson and Kligman Method            |
| Hydroxyethylmethacrylat           |                  | Maximierungstest           | hen          |                                         |
| 868-77-9                          |                  |                            |              |                                         |

Seite 16 von

SDB-Nr.: 175577 V013.0 27

# Keimzell-Mutagenität:

Das Gemisch ist auf der Grundlage von Grenzwerten, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

| Gefährliche Inhaltsstoffe CAS-Nr.                          | Ergebnis | Studientyp /<br>Verabreichungsro<br>ute                                                        | Metabolische<br>Aktivierung/<br>Expositionszeit | Spezies | Methode                                                                                                                                             |
|------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------|-------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Isobornylacrylat<br>5888-33-5                              | negativ  | bacterial reverse<br>mutation assay (e.g<br>Ames test)                                         | mit und ohne                                    |         | OECD Guideline 471<br>(Bacterial Reverse Mutation<br>Assay)                                                                                         |
| Isobornylacrylat<br>5888-33-5                              | negativ  | Säugetierzell-<br>Genmutationsmuste<br>r                                                       | mit und ohne                                    |         | OECD Guideline 476 (In vitro<br>Mammalian Cell Gene<br>Mutation Test)                                                                               |
| Isobornylacrylat<br>5888-33-5                              | negativ  | in vitro Säugetier-<br>Zell-Micronucleus<br>Test                                               | mit und ohne                                    |         | OECD Guideline 487 (In vitro<br>Mammalian Cell<br>Micronucleus Test)                                                                                |
| Phenol, ethoxyliert, Ester<br>mit Acrylsäure<br>56641-05-5 | negativ  | bacterial reverse<br>mutation assay (e.g<br>Ames test)                                         | mit und ohne                                    |         | OECD Guideline 471<br>(Bacterial Reverse Mutation<br>Assay)                                                                                         |
| Phenol, ethoxyliert, Ester<br>mit Acrylsäure<br>56641-05-5 | negativ  | Säugetierzell-<br>Genmutationsmuste<br>r                                                       | mit und ohne                                    |         | OECD Guideline 476 (In vitro<br>Mammalian Cell Gene<br>Mutation Test)                                                                               |
| Phenol, ethoxyliert, Ester<br>mit Acrylsäure<br>56641-05-5 | negativ  | in vitro<br>Säugetierchromoso<br>nen Anomalien-<br>Test                                        | mit und ohne                                    |         | OECD Guideline 473 (In vitro<br>Mammalian Chromosome<br>Aberration Test)                                                                            |
| Acrylsäure<br>79-10-7                                      | negativ  | bacterial reverse<br>mutation assay (e.g<br>Ames test)                                         | mit und ohne                                    |         | equivalent or similar to OECD<br>Guideline 471 (Bacterial<br>Reverse Mutation Assay)                                                                |
| Acrylsäure<br>79-10-7                                      | negativ  | Säugetierzell-<br>Genmutationsmuste<br>r                                                       | mit und ohne                                    |         | equivalent or similar to OECD<br>Guideline 476 (In vitro<br>Mammalian Cell Gene<br>Mutation Test)                                                   |
| Acrylsäure<br>79-10-7                                      | negativ  | in vitro DNA Zerstörungs- und Reparaturmuster, außerplanmäßige DNA-Synthese in Säugetierzellen | without                                         |         | equivalent or similar to OECD<br>Guideline 482 (Genetic<br>Toxicology: DNA Damage<br>and Repair, Unscheduled<br>DNA Synthesis in Mammalian<br>Cells |
| 2-Propylsäure,<br>Homopolymer<br>(Oligomere)<br>9003-01-4  | negativ  | bacterial reverse<br>mutation assay (e.g<br>Ames test)                                         | mit und ohne                                    |         | equivalent or similar to OECD<br>Guideline 471 (Bacterial<br>Reverse Mutation Assay)                                                                |
| 2-Propylsäure,<br>Homopolymer<br>(Oligomere)<br>9003-01-4  | negativ  | in vitro<br>Säugetierchromoso<br>nen Anomalien-<br>Test                                        | mit und ohne                                    |         | equivalent or similar to OECD<br>Guideline 473 (In vitro<br>Mammalian Chromosome<br>Aberration Test)                                                |
| 2-Propylsäure,<br>Homopolymer<br>(Oligomere)<br>9003-01-4  | negativ  | Säugetierzell-<br>Genmutationsmuste<br>r                                                       | mit und ohne                                    |         | equivalent or similar to OECD<br>Guideline 476 (In vitro<br>Mammalian Cell Gene<br>Mutation Test)                                                   |
| Methylmethacrylat 80-62-6                                  | negativ  | bacterial reverse<br>mutation assay (e.g<br>Ames test)                                         | mit und ohne                                    |         | nicht spezifiziert                                                                                                                                  |
| Methacrylsäure<br>79-41-4                                  | negativ  | bacterial reverse<br>mutation assay (e.g<br>Ames test)                                         | mit und ohne                                    |         | equivalent or similar to OECD<br>Guideline 471 (Bacterial<br>Reverse Mutation Assay)                                                                |
| 2-<br>Hydroxyethylmethacrylat<br>868-77-9                  | negativ  | bacterial reverse<br>mutation assay (e.g<br>Ames test)                                         | mit und ohne                                    |         | OECD Guideline 471<br>(Bacterial Reverse Mutation<br>Assay)                                                                                         |
| 2-<br>Hydroxyethylmethacrylat<br>868-77-9                  | positiv  | in vitro<br>Säugetierchromoso<br>nen Anomalien-<br>Test                                        | mit und ohne                                    |         | OECD Guideline 473 (In vitro<br>Mammalian Chromosome<br>Aberration Test)                                                                            |
| 2-<br>Hydroxyethylmethacrylat<br>868-77-9                  | negativ  | Säugetierzell-<br>Genmutationsmuste<br>r                                                       | mit und ohne                                    |         | OECD Guideline 476 (In vitro<br>Mammalian Cell Gene<br>Mutation Test)                                                                               |
| Acrylsäure<br>79-10-7                                      | negativ  | oral über eine<br>Sonde                                                                        |                                                 | Ratte   | equivalent or similar to OECD<br>Guideline 475 (Mammalian<br>Bone Marrow Chromosome<br>Aberration Test)                                             |
| Acrylsäure                                                 | negativ  | oral über eine                                                                                 |                                                 | Maus    | nicht spezifiziert                                                                                                                                  |

Seite 17 von

SDB-Nr.: 175577 V013.0 27

| 79-10-7                                                   |         | Sonde                   |                            | 1                                                                                                       |
|-----------------------------------------------------------|---------|-------------------------|----------------------------|---------------------------------------------------------------------------------------------------------|
| 2-Propylsäure,<br>Homopolymer<br>(Oligomere)<br>9003-01-4 | negativ | oral über eine<br>Sonde | Ratte                      | equivalent or similar to OECD<br>Guideline 475 (Mammalian<br>Bone Marrow Chromosome<br>Aberration Test) |
| Methacrylsäure<br>79-41-4                                 | negativ | Inhalation              | Maus                       | equivalent or similar to OECD<br>Guideline 478 (Genetic<br>Toxicology: Rodent Dominant<br>Lethal Test)  |
| Methacrylsäure<br>79-41-4                                 | negativ | oral über eine<br>Sonde | Maus                       | equivalent or similar to OECD<br>Guideline 474 (Mammalian<br>Erythrocyte Micronucleus<br>Test)          |
| Camphen 79-92-5                                           | negativ | oral über eine<br>Sonde | Maus                       | OECD Guideline 474<br>(Mammalian Erythrocyte<br>Micronucleus Test)                                      |
| 2-<br>Hydroxyethylmethacrylat<br>868-77-9                 | negativ | oral über eine<br>Sonde | Ratte                      | OECD Guideline 474<br>(Mammalian Erythrocyte<br>Micronucleus Test)                                      |
| 2-<br>Hydroxyethylmethacrylat<br>868-77-9                 | negativ | oral über eine<br>Sonde | Drosophila<br>melanogaster | nicht spezifiziert                                                                                      |

# Karzinogenität

Das Gemisch ist auf der Grundlage von Grenzwerten, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

| Gefährliche Inhaltsstoffe CAS-Nr.         | Ergebnis                | Aufnahmeweg          | Expositions<br>dauer /<br>Häufigkeit<br>der<br>Behandlung | Spezies | Geschlecht             | Methode                                                                     |
|-------------------------------------------|-------------------------|----------------------|-----------------------------------------------------------|---------|------------------------|-----------------------------------------------------------------------------|
| Acrylsäure<br>79-10-7                     | nicht<br>krebserzeugend | oral:<br>Trinkwasser | 26 - 28 m<br>continuously                                 | Ratte   | männlich /<br>weiblich | OECD Guideline 451<br>(Carcinogenicity<br>Studies)                          |
| Acrylsäure<br>79-10-7                     | nicht<br>krebserzeugend | dermal               | 21 m<br>3 times/w                                         | Maus    | männlich /<br>weiblich | nicht spezifiziert                                                          |
| Methacrylsäure<br>79-41-4                 | nicht<br>krebserzeugend | Inhalation           | 2 y                                                       | Maus    | männlich /<br>weiblich | OECD Guideline 451<br>(Carcinogenicity<br>Studies)                          |
| 2-<br>Hydroxyethylmethacrylat<br>868-77-9 | nicht<br>krebserzeugend | Inhalation           | 2 y<br>6 h/d, 5 d/w                                       | Ratte   | weiblich               | equivalent or similar<br>OECD Guideline 451<br>(Carcinogenicity<br>Studies) |
| 2-<br>Hydroxyethylmethacrylat<br>868-77-9 | nicht<br>krebserzeugend | Inhalation           | 2 y<br>6 h/d, 5 d/w                                       | Ratte   | männlich               | equivalent or similar<br>OECD Guideline 451<br>(Carcinogenicity<br>Studies) |

Seite 18 von

SDB-Nr.: 175577 V013.0 27

# Reproduktionstoxizität:

Das Gemisch ist auf der Grundlage von Grenzwerten, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

| Gefährliche Inhaltsstoffe<br>CAS-Nr.                      | Ergebnis / Wert                                                       | Testtyp                          | Aufnahmew<br>eg         | Spezies | Methode                                                                                                                                 |
|-----------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------|-------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Isobornylacrylat<br>5888-33-5                             | NOAEL P 100 mg/kg<br>NOAEL F1 100 mg/kg                               | screening                        | oral über<br>eine Sonde | Ratte   | OECD Guideline 422<br>(Combined Repeated Dose<br>Toxicity Study with the<br>Reproduction /<br>Developmental Toxicity<br>Screening Test) |
| Acrylsäure<br>79-10-7                                     | NOAEL P 83 mg/kg<br>NOAEL F1 250 mg/kg                                | Ein-<br>Generatione<br>n Studie  | oral:<br>Trinkwasser    | Ratte   | equivalent or similar to<br>OECD Guideline 415 (One-<br>Generation Reproduction<br>Toxicity Study)                                      |
| Acrylsäure<br>79-10-7                                     | NOAEL P 240 mg/kg<br>NOAEL F1 53 mg/kg<br>NOAEL F2 53 mg/kg           | Zwei-<br>Generatione<br>n-Studie | oral:<br>Trinkwasser    | Ratte   | OECD Guideline 416 (Two-Generation Reproduction Toxicity Study)                                                                         |
| 2-Propylsäure,<br>Homopolymer<br>(Oligomere)<br>9003-01-4 | NOAEL P 240 mg/kg<br>NOAEL F1 53 mg/kg<br>NOAEL F2 53 mg/kg           | Zwei-<br>Generatione<br>n-Studie | oral:<br>Trinkwasser    | Ratte   | OECD Guideline 416 (Two-Generation Reproduction Toxicity Study)                                                                         |
| Methacrylsäure<br>79-41-4                                 | NOAEL P 50 mg/kg<br>NOAEL F1 400 mg/kg<br>NOAEL F2 400 mg/kg          | 2-<br>Generatione<br>n-Studie    | oral über<br>eine Sonde | Ratte   | OECD Guideline 416 (Two-Generation Reproduction Toxicity Study)                                                                         |
| 2-<br>Hydroxyethylmethacrylat<br>868-77-9                 | NOAEL P $>= 1.000 \text{ mg/kg}$<br>NOAEL F1 $>= 1.000 \text{ mg/kg}$ | screening                        | oral über<br>eine Sonde | Ratte   | equivalent or similar to<br>OECD Guideline 422<br>(Combined Repeated Dose<br>Toxicity Study)                                            |

# Spezifische Zielorgan-Toxizität bei einmaliger Exposition:

Das Gemisch ist auf der Grundlage von Grenzwerten, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

| Gefährliche Inhaltsstoffe | Beurteilung               | Expositions | Zielorgane | Bemerkungen |
|---------------------------|---------------------------|-------------|------------|-------------|
| CAS-Nr.                   |                           | weg         |            |             |
| Acrylsäure                | Kann die Atemwege reizen. |             |            |             |
| 79-10-7                   |                           |             |            |             |
| 2-Propylsäure,            | Kann die Atemwege reizen. |             |            |             |
| Homopolymer               |                           |             |            |             |
| (Oligomere)               |                           |             |            |             |
| 9003-01-4                 |                           |             |            |             |
| 2-Propensäure, 2-         | Kann die Atemwege reizen. |             |            |             |
| Carboxyethylester         |                           |             |            |             |
| 24615-84-7                |                           |             |            |             |
| Methacrylsäure            | Kann die Atemwege reizen. |             |            |             |
| 79-41-4                   |                           |             |            |             |

Seite 19 von

SDB-Nr.: 175577 V013.0 27

# Spezifische Zielorgan-Toxizität bei wiederholter Exposition:

Das Gemisch ist auf der Grundlage von Grenzwerten, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

| Gefährliche Inhaltsstoffe CAS-Nr.                         | Ergebnis / Wert   | Aufnahmew<br>eg         | Expositionsdauer /<br>Frequenz der<br>Anwendungen | Spezies | Methode                                                                                                                                 |
|-----------------------------------------------------------|-------------------|-------------------------|---------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Isobornylacrylat<br>5888-33-5                             | NOAEL 100 mg/kg   | oral über<br>eine Sonde | once daily                                        | Ratte   | OECD Guideline 422<br>(Combined Repeated<br>Dose Toxicity Study with<br>the Reproduction /<br>Developmental Toxicity<br>Screening Test) |
| Acrylsäure<br>79-10-7                                     | NOAEL 40 mg/kg    | oral:<br>Trinkwasser    | 12 m<br>daily                                     | Ratte   | equivalent or similar to<br>OECD Guideline 452<br>(Chronic Toxicity<br>Studies)                                                         |
| Acrylsäure<br>79-10-7                                     | NOAEL 0,015 mg/l  | Inhalation:<br>Dampf    | 90 d<br>6 h/d, 5 d/w                              | Maus    | equivalent or similar to<br>OECD Guideline 413<br>(Subchronic Inhalation<br>Toxicity: 90-Day)                                           |
| 2-Propylsäure,<br>Homopolymer<br>(Oligomere)<br>9003-01-4 | NOAEL 40 mg/kg    | oral:<br>Trinkwasser    | 12 m<br>daily                                     | Ratte   | equivalent or similar to<br>OECD Guideline 452<br>(Chronic Toxicity<br>Studies)                                                         |
| Methylmethacrylat<br>80-62-6                              | LOAEL 2000 ppm    | Inhalation              | 14 weeks<br>6 hrs/day, 5 days/wk                  | Maus    | Dose Range Finding<br>Study                                                                                                             |
| Methylmethacrylat<br>80-62-6                              | NOAEL 1000 ppm    | Inhalation              | 14 weeks<br>6 hrs/day, 5 days/wk                  | Maus    | Dose Range Finding<br>Study                                                                                                             |
| Methacrylsäure 79-41-4                                    |                   | Inhalation              | 90 d<br>6 h/d, 5 d/w                              | Ratte   | OECD Guideline 413<br>(Subchronic Inhalation<br>Toxicity: 90-Day)                                                                       |
| Camphen 79-92-5                                           | LOAEL 1.000 mg/kg | oral über<br>eine Sonde | 28 days<br>daily                                  | Ratte   | OECD Guideline 407<br>(Repeated Dose 28-Day<br>Oral Toxicity in Rodents)                                                                |
| 2-<br>Hydroxyethylmethacrylat<br>868-77-9                 | NOAEL 100 mg/kg   | oral über<br>eine Sonde | 49 d<br>daily                                     | Ratte   | OECD Guideline 422<br>(Combined Repeated<br>Dose Toxicity Study with<br>the Reproduction /<br>Developmental Toxicity<br>Screening Test) |
| 2-<br>Hydroxyethylmethacrylat<br>868-77-9                 | NOAEL 0,352 mg/l  | Inhalation              | 90 d<br>6 h/d, 5 d/w                              | Ratte   | OECD Guideline 413<br>(Subchronic Inhalation<br>Toxicity: 90-Day)                                                                       |

# Aspirationsgefahr:

Keine Daten vorhanden.

# 11.2 Angaben über sonstige Gefahren

Keine Daten vorhanden

Seite 20 von

SDB-Nr.: 175577 27 V013.0

# **ABSCHNITT 12: Umweltbezogene Angaben**

# Allgemeine Angaben zur Ökologie:

Nicht in die Kanalisation / Oberflächenwasser / Grundwasser gelangen lassen.

#### 12.1. Toxizität

#### Toxizität (Fisch):

Das Gemisch ist gemäß der Kalkulationsmethode, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Die nachstehende Tabelle enthält die Daten der eingestuften Stoffe, die in dem Gemisch enthalten sind.

| Gefährliche Inhaltsstoffe      | Werttyp | Wert          | Expositionsdau | Spezies                      | Methode                   |
|--------------------------------|---------|---------------|----------------|------------------------------|---------------------------|
| CAS-Nr.                        |         |               | er             |                              |                           |
| Isobornylacrylat               | LC50    | 0,704 mg/l    | 96 h           | Danio rerio                  | OECD Guideline 203 (Fish, |
| 5888-33-5                      |         |               |                |                              | Acute Toxicity Test)      |
| Phenol, ethoxyliert, Ester mit | LC50    | 10 mg/l       | 96 h           | Leuciscus idus               | OECD Guideline 203 (Fish, |
| Acrylsäure                     |         |               |                |                              | Acute Toxicity Test)      |
| 56641-05-5                     |         |               |                |                              |                           |
| Acrylsäure                     | LC50    | 27 mg/l       | 96 h           | Salmo gairdneri (new name:   | EPA OTS 797.1400 (Fish    |
| 79-10-7                        |         |               |                | Oncorhynchus mykiss)         | Acute Toxicity Test)      |
| Acrylsäure                     | NOEC    | >= 10,1  mg/l | 45 d           | Oryzias latipes              | OECD 210 (fish early lite |
| 79-10-7                        |         |               |                |                              | stage toxicity test)      |
| 2-Propylsäure, Homopolymer     | LC50    | 27 mg/l       | 96 h           | Oncorhynchus mykiss          | OECD Guideline 203 (Fish, |
| (Oligomere)                    |         |               |                |                              | Acute Toxicity Test)      |
| 9003-01-4                      |         |               |                |                              |                           |
| 2-Propylsäure, Homopolymer     | NOEC    | > 10,1 mg/l   | 45 d           | Oryzias latipes              | OECD 210 (fish early lite |
| (Oligomere)                    |         |               |                |                              | stage toxicity test)      |
| 9003-01-4                      |         |               |                |                              |                           |
| Methylmethacrylat              | LC50    | 350 mg/l      | 96 h           | Leuciscus idus               | OECD Guideline 203 (Fish, |
| 80-62-6                        |         |               |                |                              | Acute Toxicity Test)      |
| Methacrylsäure                 | LC50    | 85 mg/l       | 96 h           | Salmo gairdneri (new name:   | EPA OTS 797.1400 (Fish    |
| 79-41-4                        |         |               |                | Oncorhynchus mykiss)         | Acute Toxicity Test)      |
| Methacrylsäure                 | NOEC    | 10 mg/l       | 35 d           | Danio rerio                  | OECD 210 (fish early lite |
| 79-41-4                        |         |               |                |                              | stage toxicity test)      |
| Camphen                        | LC50    | 0,72 mg/l     | 96 h           | Brachydanio rerio (new name: | OECD Guideline 203 (Fish, |
| 79-92-5                        |         | _             |                | Danio rerio)                 | Acute Toxicity Test)      |
| 2-Hydroxyethylmethacrylat      | LC50    | > 100 mg/l    | 96 h           | Oryzias latipes              | OECD Guideline 203 (Fish, |
| 868-77-9                       |         |               |                |                              | Acute Toxicity Test)      |

#### Toxizität (wirbellose Wassertiere):

Das Gemisch ist gemäß der Kalkulationsmethode, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Die nachstehende Tabelle enthält die Daten der eingestuften Stoffe, die in dem Gemisch enthalten sind.

| Gefährliche Inhaltsstoffe      | Werttyp | Wert       | Expositionsdau | Spezies       | Methode                     |
|--------------------------------|---------|------------|----------------|---------------|-----------------------------|
| CAS-Nr.                        |         |            | er             |               |                             |
| Isobornylacrylat               | EC50    | 1 mg/l     | 48 h           | Daphnia magna | OECD Guideline 202          |
| 5888-33-5                      |         |            |                |               | (Daphnia sp. Acute          |
|                                |         |            |                |               | Immobilisation Test)        |
| Phenol, ethoxyliert, Ester mit | EC50    | 1,21 mg/l  | 48 h           | Daphnia magna | OECD Guideline 202          |
| Acrylsäure                     |         |            |                |               | (Daphnia sp. Acute          |
| 56641-05-5                     |         |            |                |               | Immobilisation Test)        |
| Acrylsäure                     | EC50    | 95 mg/l    | 48 h           | Daphnia magna | EPA OTS 797.1300            |
| 79-10-7                        |         |            |                |               | (Aquatic Invertebrate Acute |
|                                |         |            |                |               | Toxicity Test, Freshwater   |
|                                |         |            |                |               | Daphnids)                   |
| 2-Propylsäure, Homopolymer     | EC50    | 47 mg/l    | 48 h           | Daphnia magna | OECD Guideline 202          |
| (Oligomere)                    |         |            |                |               | (Daphnia sp. Acute          |
| 9003-01-4                      |         |            |                |               | Immobilisation Test)        |
| Methylmethacrylat              | EC50    | 69 mg/l    | 48 h           | Daphnia magna | EPA OTS 797.1300            |
| 80-62-6                        |         |            |                |               | (Aquatic Invertebrate Acute |
|                                |         |            |                |               | Toxicity Test, Freshwater   |
|                                |         |            |                |               | Daphnids)                   |
| Methacrylsäure                 | EC50    | > 130 mg/l | 48 h           | Daphnia magna | EPA OTS 797.1300            |

Seite 21 von

SDB-Nr.: 175577 V013.0 27

| 79-41-4                               |      |           |      |               | (Aquatic Invertebrate Acute<br>Toxicity Test, Freshwater<br>Daphnids) |
|---------------------------------------|------|-----------|------|---------------|-----------------------------------------------------------------------|
| Camphen 79-92-5                       | EC50 | 0,72 mg/l | 48 h | Daphnia magna | OECD Guideline 202<br>(Daphnia sp. Acute<br>Immobilisation Test)      |
| 2-Hydroxyethylmethacrylat<br>868-77-9 | EC50 | 380 mg/l  | 48 h | Daphnia magna | OECD Guideline 202<br>(Daphnia sp. Acute<br>Immobilisation Test)      |

# Chronische Toxizität (wirbellose Wassertiere):

Die nachstehende Tabelle enthält die Daten der eingestuften Stoffe, die in dem Gemisch enthalten sind.

| Gefährliche Inhaltsstoffe<br>CAS-Nr.                   | Werttyp | Wert       | Expositionsdau | Spezies       | Methode                                                |
|--------------------------------------------------------|---------|------------|----------------|---------------|--------------------------------------------------------|
| Isobornylacrylat<br>5888-33-5                          | NOEC    | 0,092 mg/l | 21 d           | Daphnia magna | OECD 211 (Daphnia magna, Reproduction Test)            |
| Acrylsäure<br>79-10-7                                  | NOEC    | 19 mg/l    | 21 d           | Daphnia magna | EPA OTS 797.1330<br>(Daphnid Chronic Toxicity<br>Test) |
| 2-Propylsäure, Homopolymer<br>(Oligomere)<br>9003-01-4 | NOEC    | 19 mg/l    | 21 d           | Daphnia magna | EPA OTS 797.1330<br>(Daphnid Chronic Toxicity<br>Test) |
| Methylmethacrylat<br>80-62-6                           | NOEC    | 37 mg/l    | 21 d           | Daphnia magna | OECD 211 (Daphnia magna, Reproduction Test)            |
| Methacrylsäure<br>79-41-4                              | NOEC    | 53 mg/l    | 21 d           | Daphnia magna | OECD 211 (Daphnia magna, Reproduction Test)            |
| Camphen<br>79-92-5                                     | NOEC    | 0,092 mg/l | 21 t           | Daphnia magna | OECD 211 (Daphnia magna, Reproduction Test)            |
| 2-Hydroxyethylmethacrylat 868-77-9                     | NOEC    | 24,1 mg/l  | 21 d           | Daphnia magna | OECD 211 (Daphnia magna, Reproduction Test)            |

# Toxizität (Algea):

SDB-Nr.: 175577 V013.0 27

Das Gemisch ist gemäß der Kalkulationsmethode, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Die nachstehende Tabelle enthält die Daten der eingestuften Stoffe, die in dem Gemisch enthalten sind.

| Gefährliche Inhaltsstoffe<br>CAS-Nr.                       | Werttyp | Wert               | Expositionsdau<br>er | Spezies                                                                     | Methode                                              |
|------------------------------------------------------------|---------|--------------------|----------------------|-----------------------------------------------------------------------------|------------------------------------------------------|
| Isobornylacrylat<br>5888-33-5                              | NOEC    | 0,405 mg/l         | 72 h                 | Pseudokirchneriella subcapitata                                             | OECD Guideline 201 (Alga,<br>Growth Inhibition Test) |
| Isobornylacrylat<br>5888-33-5                              | EC50    | 1,98 mg/l          | 72 h                 | Pseudokirchneriella subcapitata                                             | OECD Guideline 201 (Alga,<br>Growth Inhibition Test) |
| Phenol, ethoxyliert, Ester mit<br>Acrylsäure<br>56641-05-5 | EC50    | 4,4 mg/l           | 72 h                 | Desmodesmus subspicatus                                                     | OECD Guideline 201 (Alga,<br>Growth Inhibition Test) |
| Phenol, ethoxyliert, Ester mit<br>Acrylsäure<br>56641-05-5 | EC10    | 0,71 mg/l          | 72 h                 | Desmodesmus subspicatus                                                     | OECD Guideline 201 (Alga,<br>Growth Inhibition Test) |
| Acrylsäure<br>79-10-7                                      | EC10    | 0,03 mg/l          | 72 h                 | Scenedesmus subspicatus (new name: Desmodesmus subspicatus)                 | EU Method C.3 (Algal<br>Inhibition test)             |
| Acrylsäure<br>79-10-7                                      | EC50    | 0,13 mg/l          | 72 h                 | Scenedesmus subspicatus (new name: Desmodesmus subspicatus)                 | EU Method C.3 (Algal<br>Inhibition test)             |
| 2-Propylsäure, Homopolymer<br>(Oligomere)<br>9003-01-4     | EC50    | 18 mg/lca.         | 72 h                 | Raphidocelis subcapitata (new name: Pseudokirchneriella subcapitata)        | OECD Guideline 201 (Alga,<br>Growth Inhibition Test) |
| 2-Propylsäure, Homopolymer<br>(Oligomere)<br>9003-01-4     | EC10    | 4 mg/l             | 72 h                 | Raphidocelis subcapitata (new name: Pseudokirchneriella subcapitata)        | OECD Guideline 201 (Alga,<br>Growth Inhibition Test) |
| 2-Propensäure, 2-<br>Carboxyethylester<br>24615-84-7       | EC50    | > 1,71 - 3,55 mg/l | 72 h                 | Pseudokirchneriella subcapitata                                             | OECD Guideline 201 (Alga,<br>Growth Inhibition Test) |
| Methylmethacrylat<br>80-62-6                               | EC50    | 170 mg/l           | 96 h                 | Selenastrum capricornutum<br>(new name: Pseudokirchneriella<br>subcapitata) | OECD Guideline 201 (Alga,<br>Growth Inhibition Test) |
| Methylmethacrylat<br>80-62-6                               | NOEC    | 100 mg/l           | 96 h                 | Selenastrum capricornutum<br>(new name: Pseudokirchneriella<br>subcapitata) | OECD Guideline 201 (Alga,<br>Growth Inhibition Test) |
| Methacrylsäure<br>79-41-4                                  | NOEC    | 8,2 mg/l           | 72 h                 | Selenastrum capricornutum<br>(new name: Pseudokirchneriella<br>subcapitata) | OECD Guideline 201 (Alga,<br>Growth Inhibition Test) |
| Methacrylsäure<br>79-41-4                                  | EC50    | 45 mg/l            | 72 h                 | Selenastrum capricornutum<br>(new name: Pseudokirchneriella<br>subcapitata) | OECD Guideline 201 (Alga,<br>Growth Inhibition Test) |
| Camphen 79-92-5                                            | EC50    | 1,75 mg/l          | 72 h                 | Raphidocelis subcapitata (new name: Pseudokirchneriella subcapitata)        | OECD Guideline 201 (Alga,<br>Growth Inhibition Test) |
| Camphen 79-92-5                                            | NOEC    | 0,07 mg/l          | 72 h                 | Raphidocelis subcapitata (new name: Pseudokirchneriella subcapitata)        | OECD Guideline 201 (Alga,<br>Growth Inhibition Test) |
| 2-Hydroxyethylmethacrylat<br>868-77-9                      | EC50    | 836 mg/l           | 72 h                 | Selenastrum capricornutum<br>(new name: Pseudokirchneriella<br>subcapitata) | OECD Guideline 201 (Alga,<br>Growth Inhibition Test) |
| 2-Hydroxyethylmethacrylat<br>868-77-9                      | NOEC    | 400 mg/l           | 72 h                 | Selenastrum capricornutum<br>(new name: Pseudokirchneriella<br>subcapitata) | OECD Guideline 201 (Alga,<br>Growth Inhibition Test) |

# Toxizität (Mikroorganismen):

Das Gemisch ist gemäß der Kalkulationsmethode, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Die nachstehende Tabelle enthält die Daten der eingestuften Stoffe, die in dem Gemisch enthalten sind.

| Gefährliche Inhaltsstoffe      | Werttyp | Wert     | Expositions | sdau Spezies               | Methode                     |
|--------------------------------|---------|----------|-------------|----------------------------|-----------------------------|
| CAS-Nr.                        |         |          | er          |                            |                             |
| Phenol, ethoxyliert, Ester mit | EC50    | 177 mg/l | 3 h         | activated sludge           | OECD Guideline 209          |
| Acrylsäure                     |         |          |             |                            | (Activated Sludge,          |
| 56641-05-5                     |         |          |             |                            | Respiration Inhibition Test |
| Acrylsäure                     | EC20    | 900 mg/l | 30 min      | activated sludge, domestic | ISO 8192 (Test for          |
| 79-10-7                        |         |          |             |                            | Inhibition of Oxygen        |
|                                |         |          |             |                            | Consumption by Activated    |
|                                |         |          |             |                            | Sludge)                     |

LOCTITE AA 322 LC known as Loctite 322 Seite 23 von

SDB-Nr.: 175577 V013.0 27

| 2-Propylsäure, Homopolymer<br>(Oligomere)<br>9003-01-4 | EC20 | 900 mg/l         | 30 min | activated sludge, domestic | ISO 8192 (Test for<br>Inhibition of Oxygen<br>Consumption by Activated<br>Sludge) |
|--------------------------------------------------------|------|------------------|--------|----------------------------|-----------------------------------------------------------------------------------|
| Methylmethacrylat<br>80-62-6                           | EC20 | > 150 - 200 mg/l | 30 min | activated sludge, domestic | ISO 8192 (Test for<br>Inhibition of Oxygen<br>Consumption by Activated<br>Sludge) |
| Methacrylsäure<br>79-41-4                              | EC10 | 100 mg/l         | 17 h   | Pseudomonas putida         | DIN 38412, part 8<br>(Pseudomonas<br>Zellvermehrungshemm-<br>Test)                |
| Camphen 79-92-5                                        | EC10 | 490 mg/l         | 3 h    |                            | OECD Guideline 209<br>(Activated Sludge,<br>Respiration Inhibition Test)          |
| 2-Hydroxyethylmethacrylat 868-77-9                     | EC0  | > 3.000 mg/l     | 16 h   | Pseudomonas fluorescens    | weitere Richtlinien:                                                              |

# 12.2. Persistenz und Abbaubarkeit

Die nachstehende Tabelle enthält die Daten der eingestuften Stoffe, die in dem Gemisch enthalten sind.

| Gefährliche Inhaltsstoffe<br>CAS-Nr.                       | Ergebnis                          | Testtyp               | Abbaubarkeit | Expositions dauer | Methode                                                                                |
|------------------------------------------------------------|-----------------------------------|-----------------------|--------------|-------------------|----------------------------------------------------------------------------------------|
| Isobornylacrylat<br>5888-33-5                              | natürlich biologisch<br>abbaubar  | aerob                 | 73,9 %       | 60 d              | OECD Guideline 301 F (Ready<br>Biodegradability: Manometric<br>Respirometry Test)      |
| Isobornylacrylat<br>5888-33-5                              | Nicht leicht biologisch abbaubar. | aerob                 | 57 %         | 28 d              | OECD Guideline 310 (Ready<br>BiodegradabilityCO2 in Sealed<br>Vessels (Headspace Test) |
| Phenol, ethoxyliert, Ester mit<br>Acrylsäure<br>56641-05-5 | Nicht leicht biologisch abbaubar. | aerob                 | 22,3 %       | 28 d              | OECD Guideline 301 D (Ready<br>Biodegradability: Closed Bottle<br>Test)                |
| Acrylsäure<br>79-10-7                                      | natürlich biologisch<br>abbaubar  | aerob                 | 100 %        | 28 d              | OECD Guideline 302 B (Inherent<br>biodegradability: Zahn-<br>Wellens/EMPA Test)        |
| Acrylsäure<br>79-10-7                                      | leicht biologisch abbaubar        | aerob                 | 81 %         | 28 d              | OECD Guideline 301 D (Ready<br>Biodegradability: Closed Bottle<br>Test)                |
| 2-Propylsäure, Homopolymer<br>(Oligomere)<br>9003-01-4     | leicht biologisch abbaubar        | aerob                 | 87,4 %       | 28 d              | OECD Guideline 301 F (Ready<br>Biodegradability: Manometric<br>Respirometry Test)      |
| 2-Propylsäure, Homopolymer<br>(Oligomere)<br>9003-01-4     | natürlich biologisch<br>abbaubar  | aerob                 | 100 %        | 28 d              | OECD Guideline 302 B (Inherent<br>biodegradability: Zahn-<br>Wellens/EMPA Test)        |
| 2-Propensäure, 2-<br>Carboxyethylester<br>24615-84-7       | Nicht leicht biologisch abbaubar. | nicht<br>spezifiziert | > 0 - 60 %   | 28 d              | OECD 301 A - F                                                                         |
| Methylmethacrylat<br>80-62-6                               | leicht biologisch abbaubar        | aerob                 | 94 %         | 14 d              | OECD Guideline 301 C (Ready<br>Biodegradability: Modified MITI<br>Test (I))            |
| Methacrylsäure<br>79-41-4                                  | leicht biologisch abbaubar        | aerob                 | 86 %         | 28 d              | OECD Guideline 301 D (Ready<br>Biodegradability: Closed Bottle<br>Test)                |
| Methacrylsäure<br>79-41-4                                  | natürlich biologisch<br>abbaubar  | aerob                 | 100 %        | 14 d              | OECD Guideline 302 B (Inherent<br>biodegradability: Zahn-<br>Wellens/EMPA Test)        |
| Camphen 79-92-5                                            | Nicht leicht biologisch abbaubar. | aerob                 | 78 %         | 28 t              | OECD Guideline 301 F (Ready<br>Biodegradability: Manometric<br>Respirometry Test)      |
| Camphen 79-92-5                                            | natürlich biologisch<br>abbaubar  | aerob                 | 78 %         | 28 t              | OECD Guideline 301 F (Ready<br>Biodegradability: Manometric<br>Respirometry Test)      |
| 2-Hydroxyethylmethacrylat<br>868-77-9                      | leicht biologisch abbaubar        | aerob                 | 92 - 100 %   | 14 d              | OECD Guideline 301 C (Ready<br>Biodegradability: Modified MITI<br>Test (I))            |

# 12.3. Bioakkumulationspotenzial

Seite 24 von

SDB-Nr.: 175577 V013.0 27

Die nachstehende Tabelle enthält die Daten der eingestuften Stoffe, die in dem Gemisch enthalten sind.

| Gefährliche Inhaltsstoffe<br>CAS-Nr. | Biokonzentratio<br>nsfaktor (BCF) | Expositionsda<br>uer | Temperatur | Spezies     | Methode                                                             |
|--------------------------------------|-----------------------------------|----------------------|------------|-------------|---------------------------------------------------------------------|
| Isobornylacrylat<br>5888-33-5        | 37                                | 56 h                 | 24 °C      | Danio rerio | OECD Guideline 305<br>(Bioconcentration: Flow-through<br>Fish Test) |
| Acrylsäure<br>79-10-7                | 3,16                              |                      |            |             | QSAR (Quantitative Structure<br>Activity Relationship)              |

#### 12.4. Mobilität im Boden

Die nachstehende Tabelle enthält die Daten der eingestuften Stoffe, die in dem Gemisch enthalten sind.

| Gefährliche Inhaltsstoffe<br>CAS-Nr.                       | LogPow | Temperatur | Methode                                                                            |
|------------------------------------------------------------|--------|------------|------------------------------------------------------------------------------------|
| Isobornylacrylat<br>5888-33-5                              | 4,52   |            | OECD Guideline 117 (Partition Coefficient (n-octanol / water), HPLC Method)        |
| Phenol, ethoxyliert, Ester mit<br>Acrylsäure<br>56641-05-5 | 2,58   |            | OECD Guideline 117 (Partition Coefficient (n-octanol / water), HPLC Method)        |
| Acrylsäure<br>79-10-7                                      | 0,46   | 25 °C      | OECD Guideline 107 (Partition Coefficient (n-octanol / water), Shake Flask Method) |
| 2-Propylsäure, Homopolymer<br>(Oligomere)<br>9003-01-4     | 0,23   |            | OECD Guideline 107 (Partition Coefficient (n-octanol / water), Shake Flask Method) |
| 2-Propensäure, 2-<br>Carboxyethylester<br>24615-84-7       | 0,46   |            |                                                                                    |
| Methylmethacrylat<br>80-62-6                               | 1,38   | 20 °C      | weitere Richtlinien:                                                               |
| Methacrylsäure<br>79-41-4                                  | 0,93   | 22 °C      | OECD Guideline 107 (Partition Coefficient (n-octanol / water), Shake Flask Method) |
| Camphen 79-92-5                                            | 4,35   |            | nicht spezifiziert                                                                 |
| 2-Hydroxyethylmethacrylat 868-77-9                         | 0,42   | 25 °C      | OECD Guideline 107 (Partition Coefficient (n-octanol / water), Shake Flask Method) |

# 12.5. Ergebnisse der PBT- und vPvB-Beurteilung

Die nachstehende Tabelle enthält die Daten der eingestuften Stoffe, die in dem Gemisch enthalten sind.

| Gefährliche Inhaltsstoffe                        | PBT / vPvB                                                                                                                |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| CAS-Nr.                                          |                                                                                                                           |
| Isobornylacrylat<br>5888-33-5                    | Erfüllt nicht die Kriterien Persistent, Bioakkumulativ und Toxisch (PBT), sehr Persistent und sehr Bioakkumulativ (vPvB). |
| Acrylsäure<br>79-10-7                            | Erfüllt nicht die Kriterien Persistent, Bioakkumulativ und Toxisch (PBT), sehr Persistent und sehr Bioakkumulativ (vPvB). |
| 2-Propylsäure, Homopolymer (Oligomere) 9003-01-4 | Erfüllt nicht die Kriterien Persistent, Bioakkumulativ und Toxisch (PBT), sehr Persistent und sehr Bioakkumulativ (vPvB). |
| Methylmethacrylat<br>80-62-6                     | Erfüllt nicht die Kriterien Persistent, Bioakkumulativ und Toxisch (PBT), sehr Persistent und sehr Bioakkumulativ (vPvB). |
| Methacrylsäure<br>79-41-4                        | Erfüllt nicht die Kriterien Persistent, Bioakkumulativ und Toxisch (PBT), sehr Persistent und sehr Bioakkumulativ (vPvB). |
| Camphen 79-92-5                                  | Erfüllt nicht die Kriterien Persistent, Bioakkumulativ und Toxisch (PBT), sehr Persistent und sehr Bioakkumulativ (vPvB). |
| 2-Hydroxyethylmethacrylat<br>868-77-9            | Erfüllt nicht die Kriterien Persistent, Bioakkumulativ und Toxisch (PBT), sehr Persistent und sehr Bioakkumulativ (vPvB). |

#### 12.6. Endokrinschädliche Eigenschaften

Keine Daten vorhanden

# 12.7. Andere schädliche Wirkungen

Keine Daten vorhanden.

Seite 25 von

SDB-Nr.: 175577 27 V013.0

# **ABSCHNITT 13: Hinweise zur Entsorgung**

#### 13.1. Verfahren der Abfallbehandlung

Entsorgung des Produktes:

Gemäß einschlägiger örtlicher und nationaler Vorschriften entsorgen.

Nicht in die Kanalisation / Oberflächenwasser / Grundwasser gelangen lassen.

Entsorgung ungereinigter Verpackung:

Nach Gebrauch sind Tuben, Gebinde und Flaschen, die noch Restanhaftungen des Produktes enthalten, als Sondermüll zu entsorgen.

#### Abfallschlüssel

08 04 09\* Klebstoff- und Dichtmassenabfälle, die organische Lösemittel oder andere gefährliche Stoffe enthalten Die EAK-Abfallschlüssel sind nicht produkt- sondern herkunftsbezogen. Der Hersteller kann daher für die Produkte, die in unterschiedlichen Branchen Anwendung finden, keinen Abfallschlüssel angeben. Die aufgeführten Schlüssel sind als Empfehlung für den Anwender zu verstehen.

# **ABSCHNITT 14: Angaben zum Transport**

#### 14.1. **UN-Nummer oder ID-Nummer**

| ADR  | 3082 |
|------|------|
| RID  | 3082 |
| ADN  | 3082 |
| IMDG | 3082 |
| IATA | 3082 |

#### 14.2. Ordnungsgemäße UN-Versandbezeichnung

| ADR  | UMWELTGEFÄHRDENDER STOFF, FLÜSSIG, N.A.G. (Isobornyl acrylat)  |
|------|----------------------------------------------------------------|
| RID  | UMWELTGEFÄHRDENDER STOFF, FLÜSSIG, N.A.G. (Isobornyl acrylat)  |
| ADN  | UMWELTGEFÄHRDENDER STOFF, FLÜSSIG, N.A.G. (Isobornyl acrylat)  |
| IMDG | ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (Isobornyl |

acrylate)

Environmentally hazardous substance, liquid, n.o.s. (Isobornyl acrylate) IATA

#### 14.3. Transportgefahrenklassen

| ADR  | ç |
|------|---|
| RID  | ç |
| ADN  | 9 |
| IMDG | ç |
| IATA | Ç |

#### 14.4. Verpackungsgruppe

| ADR  | III |
|------|-----|
| RID  | III |
| ADN  | III |
| IMDG | III |
| IATA | III |

#### 14.5. Umweltgefahren

| ADR | Umweltgefährdend |
|-----|------------------|
| RID | Umweltgefährdend |

SDB-Nr.: 175577 Seite 26 von V013.0 27

ADN Umweltgefährdend IMDG Meeresschadstoff IATA Umweltgefährdend

# 14.6. Besondere Vorsichtsmaßnahmen für den Verwender

ADR Nicht anwendbar
Tunnelcode:
RID Nicht anwendbar
ADN Nicht anwendbar
IMDG Nicht anwendbar
IATA Nicht anwendbar

Die Transporteinstufungen in diesem Abschnitt gelten allgemein für verpackte und lose Ware. Für Gebinde mit einer Nettomenge von höchstens 5 L flüssiger Stoffe oder einer Nettomasse von höchstens 5 Kg fester Stoffe je Einzel- oder Innenverpackung können die Ausnahmen SV 375 (ADR), A197 (IATA), 2.10.2.7 (IMDG), NZ 4.3(10) genutzt werden, wodurch die Transporteinstufung für verpackte Ware abweichen kann.

#### 14.7. Massengutbeförderung auf dem Seeweg gemäß IMO-Instrumenten

Nicht anwendbar

# **ABSCHNITT 15: Rechtsvorschriften**

# 15.1. Vorschriften zu Sicherheit, Gesundheits- und Umweltschutz/spezifische Rechtsvorschriften für den Stoff oder das Gemisch

Ozon-schädliche Substanzen (ODS) nach Verordnung (EG) Nr. 2024/590: Nicht anwendbar Dem PIC-Verfahren unterliegenden Chemikalien nach Verordnung (EU) Nr. Nicht anwendbar 649/2012:

Persistente organische Schadstoffe (POPs) nach Verordnung (EU) 2019/1021: Nicht anwendbar

VOC-Gehalt < 5,00 % (2010/75/EC)

#### Nationale Vorschriften/Hinweise (Deutschland):

WGK: WGK 3: stark wassergefährdend. (Verordnung über Anlagen zum Umgang mit

wassergefährdenden Stoffen (AwSV) ) Einstufung nach AwSV, Anlage 1 (5.2)

Lagerklasse gemäß TRGS 510: 10

#### 15.2. Stoffsicherheitsbeurteilung

Eine Stoffsicherheitsbeurteilung wurde nicht durchgeführt.

V013.0 27

#### **ABSCHNITT 16: Sonstige Angaben**

Die Kennzeichnung des Produktes ist in Kapitel 2 aufgeführt. Vollständiger Wortlaut aller Abkürzungen im vorliegenden Sicherheitsdatenblatt sind wie folgt:

H225 Flüssigkeit und Dampf leicht entzündbar.

H226 Flüssigkeit und Dampf entzündbar.

H228 Entzündbarer Feststoff.

SDB-Nr.: 175577

H302 Gesundheitsschädlich bei Verschlucken.

H311 Giftig bei Hautkontakt.

H312 Gesundheitsschädlich bei Hautkontakt.

H314 Verursacht schwere Verätzungen der Haut und schwere Augenschäden.

H315 Verursacht Hautreizungen.

H317 Kann allergische Hautreaktionen verursachen.

H318 Verursacht schwere Augenschäden.

H319 Verursacht schwere Augenreizung.

H332 Gesundheitsschädlich bei Einatmen.

H335 Kann die Atemwege reizen.

H400 Sehr giftig für Wasserorganismen.

H410 Sehr giftig für Wasserorganismen mit langfristiger Wirkung.

H411 Giftig für Wasserorganismen, mit langfristiger Wirkung.

ED: Stoff besitzt Endokrin-aktive Eigenschaften (Endokrin Disruptor-Eigenschaften)

EU OEL: Stoff mit einem EU-Arbeitsplatzgrenzwert

EU EXPLD 1: Stoff ist im Anhang I der Verordnung (EU) 2019/1148 genannt EU EXPLD 2 Stoff ist im Anhang II der Verordnung (EU) 2019/1148 genannt

SVHC: besonders besorgnis-erregende Substanz (SVHC – substance of very high concern) der Reach

Kanditaten-Liste

PBT: Stoff, der die persistenten, bioakkumulativen und toxischen Kriterien erfüllt

PBT/vPvB: Stoff, der die persistenten, bioakkumulativen und toxischen, sowie die sehr persistenten und

sehr bioakkumulativen Kriterien erfüllt

vPvB: Stoff, der die sehr persistenten und sehr bioakkumulativen Kriterien erfüllt

#### Weitere Informationen:

Dieses Sicherheitsdatenblatt wurde erstellt für den Verkauf von Henkel an Kunden, die bei Henkel einkaufen. Es basiert auf der Verordnung (EG) Nr. 1907/2006 und enthält nur Informationen in Übereinstimmung mit den geltenden Vorschriften der Europäischen Union. In diesem Zusammenhang wird keinerlei Erklärung, Gewährleistung oder Zusicherung hinsichtlich der Einhaltung von Gesetzen oder Vorschriften anderer Gerichtsbarkeiten oder Regionen außerhalb der Europäischen Union abgegeben.

Wenn Sie in ein anderes Gebiet als die Europäische Union exportieren, konsultieren Sie bitte das entsprechende Sicherheitsdatenblatt des betreffenden Landes oder der Region, um eine Einhaltung sicherzustellen, oder kontaktieren Sie die Henkel Abteilung: Product Safety and Regulatory Affairs (SDSinfo.Adhesive@henkel.com) um den Export in andere Länder oder Regionen als die Europäische Union vor eine Ausfuhr abzuklären.

Die Angaben stützen sich auf den heutigen Stand unserer Kenntnisse und beziehen sich auf das Produkt im Anlieferungszustand. Sie sollen unsere Produkte im Hinblick auf Sicherheitserfordernisse beschreiben und haben somit nicht die Bedeutung, bestimmte Eigenschaften zuzusichern.

### Sehr geehrter Kunde,

Henkel engagiert sich dafür eine nachhaltige Zukunft zu schaffen, indem wir verschiedene Möglichkeiten entlang der gesamten Wertschöpfungskette fördern. Wenn Sie sich an diesem Vorhaben beteiligen möchten, indem Sie von der Papierzu unserer elektronischen SDB-Übermittlung wechseln, kontaktieren Sie bitte Ihren lokalen Ansprechpartner im Kundendienst. Wir empfehlen dabei als Adressaten eine nicht-personenbezogene E-Mail Adresse wie z.B. SDS@Ihre\_Firma.com.

Relevante Änderungen werden in diesem Sicherheitsdatenblatt mit senkrechten Linien am linken Rand gezeigt. Entsprechender Text erscheint in einer anderen Farbe und in geschatteten Feldern.