Mechanische Druckmesstechnik

Druckmessgeräte mit Rohrfeder Feinmessausführung, Klasse 0,6 Typ 312.20

Anwendungen

- Für gasförmige und flüssige, nicht hochviskose und nicht kristallisierende Messstoffe, die Kupferlegierungen nicht angreifen
- Präzisionsmessung in Laboratorien
- Messen von Drücken mit hoher Genauigkeit
- Überprüfen von Betriebsmanometern

Leistungsmerkmale

- Schneidenzeiger für optimale Ablesegenauigkeit
- Präzises Zeigerwerk mit Laufteilen aus Neusilber
- Anzeigebereiche bis 0 ... 600 bar

Feinmessausführung Typ 312.20

Beschreibung

Ausführung

EN 837-1

Nenngröße in mm

160

Genauigkeitsklasse

0,6

Anzeigebereiche

0 ... 0,6 bis 0 ... 600 bar

sowie alle entsprechenden Bereiche für negativen bzw. negativen und positiven Überdruck

Justagemedium

≤25 bar: Gas >25 bar: Flüssigkeit

Druckbelastbarkeit

Ruhebelastung: Skalenendwert Wechselbelastung: 0,9 x Skalenendwert 1,3 x Skalenendwert kurzzeitig:

Zulässige Temperatur

Umgebung: -40 ... +60 °C Messstoff: +80 °C maximal

Temperatureinfluss

Bei Abweichung von der Referenztemperatur (+20 °C) am Messsystem:

max. ±0,4 %/10 K vom jeweiligen Skalenendwert

Schutzart

IP 54 nach EN 60 529 / IEC 529

Seite 1 von 2

Datenblätter zu produktverwandten Geräten: Feinmessausführung; NG 250; Typ 311.11; siehe Datenblatt PM 03.02

Geschäftsführer: Walter Nemetz USt. -IdNr.: DE 812 336 107 Sitz: Plattling Registergericht: Deggendorf HRB 1914

Scheiblerstraße 3 94447 Plattling Tel.: +49 9931 960-0 Fax: +49 9931 960-199

info@zitec.de, www.zitec.de

Bankverbindungen:

Deutsche Bank BLZ: 750 700 13 Kto.: 928 077 7 SWIFT: DEUT DE MM750

DE27 7507 0013 0928 0777 00

Sparkasse Deggendorf BLZ: 741 500 00 Kto.: 380 004 838 SWIFT: BYLA DE M1DEG

DE46 7415 0000 0380 0048 38

HypoVereinsbank BLZ: 741 200 71 Kto.: 368 8434 74 SWIFT: HYVEDEMM415 DE75 7412 0071 0368 8434 74

Weitere Standorte:

Leipzig München Nürnberg Bayreuth

Mechanische Druckmesstechnik

Standardausführung

Prozessanschluss

Kupferlegierung,

Anschlusslage radial unten oder rückseitig exzentrisch, Außengewinde G 1/2 B, SW 22

Messalied

< 100 bar: Kupferlegierung, Kreisform ≥ 100 bar: CrNi-Stahl 316L, Schraubenform

Zeigerwerk

Kupferlegierung, Laufteile Neusilber

Zifferblatt

Aluminium, weiß, Skalierung schwarz

Zeiger

Schneidenzeiger, Aluminium, schwarz

Gehäuse

CrNi-Stahl

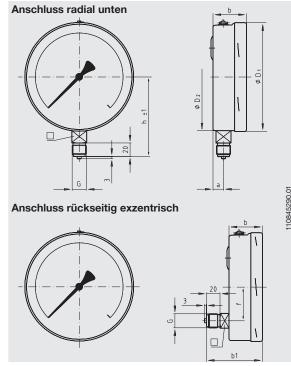
Sichtscheibe

Instrumentenflachglas

Rina

Bajonettring, CrNi-Stahl

Optionen


- Anderer Prozessanschluss
- Flüssigkeitsfüllung (Typ 333.50, Datenblatt PM 03.06)
- Erhöhte Messstofftemp. bis 100 °C mit spez. Weichlot
- Erhöhte Messstofftemp. bis 200 °C (Datenblatt PM 03.06)

weitere Optionen

- Befestigungsrand vorn oder hinten, CrNi-Stahl
- Dreikantfrontring, CrNi-Stahl poliert, mit Bügel
- Höhere Anzeigegenauigkeit: Klasse 0,25
- Spiegelskala
- Nullpunktkorrektur von außen (verstellbares Zifferblatt)
- Justagemedium Gas ab 25 bar
- Grenzsignalgeber (Datenblatt AC 08.01)

Abmessungen in mm

Standardausführung

NG	Maße in mm											Gewicht in kg
	а	b	b ₁	b ₂	D ₁	D ₂	е	f	G	h ± 1	SW	
160	15,5	49,5 ¹⁾	49,5 ¹⁾	83 1)	161	159	17,5	50	G ½ B	118	22	1,10

Prozessanschluss nach EN 837-1 / 7.3 1) Bei Anzeigebereichen \leq 4 bar und \geq 100 bar erhöht sich das Maß um 16 mm

Bestellangaben

Typ / Nenngröße / Anzeigebereich / Anschlussgröße / Anschlusslage / Optionen

Änderungen und den Austausch von Werkstoffen behalten wir uns vor. Die beschriebenen Geräte entsprechen in ihren Konstruktionen, Maßen und Werkstoffen dem derzeitigen Stand der Technik.

Seite 2 von 2

