

Dokumentation

Widerstandsthermometer mit festem Kabel/kleinem Anschlusskopf – Typ PT 100... /AK/AKK –

Dokumentation

Widerstandsthermometer

1. Inhalt

1	. Inhalt
2	Beschreibung
3	Funktion und Aufbau
	. Abmaße
5	Anschlusstechniken
6	Technische Daten

2. Beschreibung

2.1. Einsteck-Widerstandsthermometer mit festem Kabel

Einsteck-Widerstandsthermometer sind zum Einbau in Rohrleitungen, Kanälen, Behältern geeignet, schnellansprechend und bei Drücken bis 16 bar einsetzbar. Serienmäßig werden Pt 100-Temperatursensoren nach DINEN60751, Klasse B eingesetzt. Die Einsteck-Widerstands-

thermometer sind serienmäßig in Zweileiterschaltung lieferbar.

2.2. Widerstandsthermometer mit kleinem Anschlusskopf

Diese Widerstandsthermometer können für Temperaturmessungen in flüssigen und gasförmigen Medien eingesetzt wer-

Typische Einsatzgebiete ergeben sich in der Klima- und Kältetechnik, im Heizungs-, Ofen- und Apparatebau, in der chemischen Industrie, in Behälter- und Rohrleitungsanlagen.

Der Anschlusskopf ohne Transmitter ist für Umgebungstemperaturen bis 100°C geeignet. Die Schutzrohre sind standardmäßig aus Edelstahl 1.4571 gefertigt.

3. Funktion und Aufbau der Widerstandsthermometer

Platin hat sich als Widerstandsmaterial zur Herstellung von Pt100-Temperatursensoren, für die industrielle Temperaturmessung im Temperaturbereich von -220 bis +750°C weltweit durchgesetzt. Vorteile, wie chemische Resistenz, hohe Temperaturbeständigkeit, die präzise Darstellung und gute Reproduzierbarkeit seiner thermoelektrischen Eigenschaften, sowie die fast lineare Kennlinie haben dazu maßgebend beigetragen. Um einen universellen Austausch zu gewährleisten sind in der Europanorm EN 60 751 der elektrische Widerstand und die zulässige Abweichung in Abhängigkeit zur Temperatur, sowie der Temperaturkoeffizient für Pt100-Temperatursensoren definiert. Die EN 60 751 legt zwei Toleranzfelder, die Klasse "B" mit einer Abweichung z.B. bei 0°C von $\pm 0,3^{\circ}\text{C}$ fest. Zur Erfassung von Temperaturen in industriellen Prozessabläufen reicht die Klasse "B" mit einer Abweichung von ±0,3K bei 0°C aus.

Der Nennwert des Pt100-Temperatursensors beträgt bei $0^{\circ}C = 100,000$ Ohm.

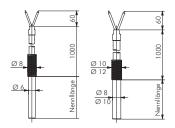
Um den Temperatursensor vor äußeren Einflüssen wie Schmutz, Feuchtigkeit, usw. zu schützen wird er in ein Schutzrohr eingebaut. Dessen Material hängt vom Medium und der Einsatztemperatur ab.. Je nach Anwendung werden Ausführungen mit Anschlusskopf oder fest angeschlossener Anschlussleitung eingesetzt.

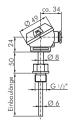
3.1. Temperaturmesstechnik mit Widerstandsthemometern

Um den temperaturabhängigen Widerstandswert des Pt100-Temperatursensors erfassen zu können, wird der von einem konstanten Messstrom verursachte Spannungsabfall gemessen. Hier gilt nach dem Ohmschen Gesetz:

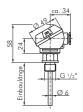
 $II = R \times I$

Um eine Erwärmung des Sensors durch den Messstrom zu minimieren, sollte der Messstrom nicht mehr als 1mA betragen. Dieser Strom führt bei einem Pt100 zu einem Spannungsabfall von 0,1 Volt. Diese Messspannung muss durch die Anschlussleitung möglichst unverfälscht zur Anzeige oder Auswertung übertragen werden.




Alle Angaben verstehen sich als unverbindliche Richtwerte! Für nicht schriftlich bestätigte Datenauswahl übernehmen wir keine Haftung. Druckangaben beziehen sich, soweit nicht anders angegeben, auf Flüssigkeiten der Gruppe II bei +20°C

Widerstandsthermometer


4. Abmaße

Typ PT 1006/8/10/...

Typ PT 1006/... AK - mit kleinem Halsrohr

Typ PT 1006/... AKK - ohne Halsrohr

DIN EN 60751

DIN EN 60751

5. Anschlusstechniken

Zweileitertechnik

Auswerteelektronik und Temperatursensor werden mit einer zweiadrigen Leitung verbunden. Wie jeder elektrische Leiter hat auch diese einen bestimmten Widerstand, der mit dem Sensor in Reihe geschaltet ist und zu einer erhöhten Temperaturanzeige führt. Beim Pt100 führt ein Temperaturunterschied von 1K zu einer Abweichung von 0,385 Ohm. An Geräten mit Zweileiteranschluss ist meist ein Leitungsabgleich durch Abwickeln eines eingeeichten Vorwiderstandes vorgesehen.

6. Technische Daten

Einsteck-Widerstandsthermometer mit festem Kabel


Werkstoff: Schutzrohr: 1.4571

Temperaturbereich: -10°C bis max. +350°C

Messeinsatz: 1 x Pt 100

Anschluss: 1 mtr. Glasseide-Edelstahlgeflecht, Kabelaustritt mit VA-Knickschutzfeder, Leitung nicht feuchtedicht, nur für trockene Umaebuna

Тур	Тур	Тур	
Schutzrohr 6 mm	Schutzrohr 8 mm	Schutzrohr 10 mm	Nennlänge
PT 1006/50	PT 1008/50	PT 10010/50	50
PT 1006/100	PT 1008/100	PT 10010/100	100
	PT 1008/150	PT 10010/150	150
		PT 10010/200	200

Widerstandsthermometer mit kleinem Anschlusskopf

Werkstoff: Schutzrohr: 1.4571, Anschlusskopf: Aludruckguss
Temperaturbereich: -50°C bis max. +400°C (Messspitze), -40°C bis max. +100°C (Anschlusskopf)

Messeinsatz: 1 x Pt 100

Schutzart: IP 54

Anschluss: Schraubklemmen, Kabeleinführung M16x1,5

Einbaugewinde: G 1/2"

Typ mit	Typ ohne	
kleinem Halsrohr	Halsrohr	Einbaulänge
PT 1006/50 AK	PT 1006/50 AKK	50
PT 1006/100 AK	PT 1006/100 AKK	100
PT 1006/150 AK	PT 1006/150 AKK	150
PT 1006/200 AK	PT 1006/200 AKK	200
PT 1006/250 AK	PT 1006/250 AKK	250
PT 1006/300 AK	PT 1006/300 AKK	300

Alle Angaben verstehen sich als unverbindliche Richtwertel Für nicht schriftlich bestätigte Datenauswahl übernehmen wir keine Haftung. Druckangaben beziehen sich, soweit nicht anders ang

